
CS 33 Week 10
Section 1G, Spring 2015

Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

● Lab 4 was due Wednesday
○ Last chance to submit: tonight (Friday), 11:55

PM
● Final Exam on Thursday (June 11th)

○ Break a leg!

Final Exam

● Thursday, June 11, 2015, 8:00am-11:00am
○ Come ~10 minutes early.

● Final Examination Code: 15
● Location: Ackerman Grand Ballroom
● Cumulative (emphasis on post-MT2)

http://smbc-comics.com/index.php?id=2999

Study Resources
TA pages:
 Eric: www.eric-kim.net/cs33_page
 Uen-Tao: http://www.seas.ucla.edu/~uentao/
 He posts his lecture notes too!
 Brandon: http://www.cs.ucla.edu/~brandonwu/

Textbook!
Google

http://www.eric-kim.net/cs33_page
http://www.seas.ucla.edu/~uentao/
http://www.cs.ucla.edu/~brandonwu/

Overview

● Linking
● Exceptions/Errors

Compilation Pipeline

Demo: Show compilation of simple C program

Object Files

Aka "Relocatable Object Files".
On unix systems, .o files are in ELF format ("Executable and Linkable
Format").
Are binary objects that contain several sections:
 header, text, rodata, data, bss, symtable, rel_text, rel_data, debug,
line, strtab, footer

Object Files: readelf
Cool trick: Use the program to inspect object files!

…

Object Files: readelf
Can also use readelf on executable files:

Linking

Generates an executable. Two main steps:
(1) Symbol resolution
(2) Relocation

Linking: Demo

Demo: Show how to use CSAPP functions in
my C programs.

Linking and header files (.h)

Question: How to
create executable?

Answer:
 $ gcc -c file1.c
 $ gcc -c mything.c
 $ gcc -o file1 file1.o mything.o

Question: Why did
we not have to
mention mything.h?

Linking and header files (.h)

Answer: C preprocessor copied body of
mything.h into file1.c, ie check out:
 $ cpp file1.c file1.i

Linking and header files (.h)

Demo: Let's look at the generated symbol tables for file1.o and mything.o
In file1.o, we see that PI_ is declared as COM (uninitialized global var), and fn is
declared as UNDEF.

Linking and header files (.h)

Question: Why does file1.c compile,
but file1b.c not compile? What step
of compilation process does file1b.c
fail?

Answer: In file1b.c, the symbols
PI_,fn are not declared anywhere.
This is caught by the assembler, ie:
 $ gcc -S file1b.c
 ERROR

Answer: Still compiles! But get wrong answer: C assumes int
return value for undeclared functions that are found at link time:
http://stackoverflow.com/questions/9780930/correct-answer-
before-return-incorrect-after-return

Question: What if
we removed
declaration of fn()
in mything.h?

Linking and header files (.h)

(Really weird!)

http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return
http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return
http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return

Mismatched function prototypes
For fun reading, check out this post that explores what happens
when a function prototype disagrees with the actual function
definition:
http://stackoverflow.com/questions/15137702/function-prototype-
in-header-file-doesnt-match-definition-how-to-catch-this

http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this
http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this
http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this

Static vs Dynamic Linking

Two ways to link a program, each with its pros
and cons.

Static Linking
Specify object file at compilation time. Ex: Here, mything.o
is statically linked to file1:

For larger projects:

…

Creating Libraries: ar
Suppose I have two files: add.c, mult.c
Can package their .o files into a single .a file:

(libek.a is basically add.o concatenated with mult.o)
Can use it later during linking:

Demo [week10_slink]: add.c, mult.c, main.c, etc.
./main is statically linked

Question: Why is ./main much larger than ./mains?

Static Linking: Pros/Cons
Pros
 - Consistent behavior across systems.
 - Simple!
Cons
 - Larger executable size. Ex: libc.a is ~8MB!
 - If a library has an update (libmp3.a), then we have to re-link the project to
include the updated library.
 - For common libs (ie libc), each process has a copy in memory. Wasteful!
 - Can't share libraries with other processes (discuss later)

Dynamic Linking
Static: Load all libraries into executable during compile
time.
Dynamic: Load library(s) into executable while loading
program!

Has a number of benefits.

Shared Libraries: .so and .dll
By design, shared (ie dynamic) libraries are loaded during
runtime, when OS loads program into memory.

.so: "Shared Object" [unix]

.dll: "Dynamic Link Library" [windows]

(In unix, can create shared libraries with gcc!)

Dynamic Linker

As OS loads program into memory, if it notices
program refers to dynamic library (.interp, .
dynsym, etc), then it will invoke dynamic linker.

"DLL Hell"
Shared libs are now decoupled from executable.
Scenario: I download VLC 2.1.0, which assumed libmpeg2
(v1.1). Then, I upgrade libmpeg2 to v1.2, because 1.2 is
much faster and less buggy.
Problem: VLC might now be broken!

DLL Hell!

Dynamic Linking: Pros/Cons
Pros
 Smaller executable.
 Processes can share libraries, save memory!

Cons
 Possible instabilities ("DLL Hell")
 More complicated behavior during load time (due to dynlinker).

Demo: Static vs Dynamic Linking
Check: week10_slink/*
Things to check:
 1. mains, maind
 2. How to create static/shared libs
 3. Relative sizes of mains, maind
 4. readelf/objdump --reloc -d of mains/maind

Object File (Contents)
(We only consider x86 ELF format)

Contains several sections in binary format.

(relocatable) object file! Not an
executable yet!

Object File (Contents)
text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab
(Not shown: Header and Footer)

Is actually
empty!

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

text: instructions for *this*
module, ie any functions
defined in this file.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

rodata: Read-only data.
Example: constant strings
declared in your
programs.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

data: Read/write data that
is initialized by user.
Example: static initialized
variables (ie file-level).

…

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

bss: Read/write data that
is uninitialized by user.
Example: static
uninitialized variables.

…

"empty"

bss section: "Better Save Space"
bss section only contains length, ie # bytes of bss data
there is.
Thus, object file does not actually set aside space for these
uninitialized file-scope variables.

However, when the program is executed, the .bss section is
allocated on the stack zero'd out.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

symtable: Information about
symbols:
(1) What symbols I define
(2) What symbols are undefined

symtable

Question: What do the symtables
look like for both file1.o and file2.o?

Answer: file1.o declares
main(), but claims PI, printf are
undefined.
file2.o declares PI.

Demo: Show symtables for file1.
o, file2.o

symtable Ndx: The section index. # can have diff meaning
for different objfiles! 1: text

symtable Ndx: The section index.
1: text 2: data 3: bss

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

rel_text: Locations in .text that
must be relocated.
Ex: Any inst that calls an
externally-defined function.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

rel_data: Locations in .data that
must be relocated.
Ex: Any initialized global variable
whose initial value is the addr of a
global variable or externally-
defined function.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

debug: Contains information for
debugger.

line: Maps btwn machine code
insts and C source code lines.

For both debug+line, must use
-g compiler option.

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

strtab: String table. Contains
the human-readable string for
each symbol in symtable and
debug.

Symbol Resolution, Relocation
During compilation, need to know
(1) What symbols are defined (and where)
(2) What run-time addresses to assign to each symbol

Key: Need to handle multiple files, each referring to each
other.

Symbol Resolution

Idea: At assemble time, want to know:
(1) Which symbols do I define?
(2) Which symbols are defined in other files?

Basically: Creates the .symtable section of the object file.

Quick Example

Question: Which symbols are
completely resolved during symbol
resolution ($ gcc -c file1.c)? Which
symbols are declared as UNDEF?

Answer:
Resolved: PI, fn, main.
Undefined: counter, var

Strong vs Weak Symbols
Mechanism to handle multiple definitions of the same
global symbol.
Basic: "strong" symbols trump "weak" symbols.
 Can't have >1 "strong" symbols for same symbol (error).

For details, read Textbook (Ch. 7.6.1, pg 664).

Relocation
Occurs after Symbol Resolution.
At this point, linker knows the exact sizes of code/data
sections.
Next: Assign run-time addresses to each symbol!

objdump
Can use objdump to view *unrelocated* symbols.

objdump
Contrast with fully-linked (relocated) executable:

Relocation Algorithm
Relocation effectively performs the previous transformation,
via a fixed-point algorithm.
For details on relocation algorithm itself, read Ch. 7.7 (pgs
672-677). Algorithm itself is on pg. 674 (Fig. 7.9).
Questions you should consider:
(1) Convince yourself that the algorithm always terminates.
(2) On lines 8,13, why do I have to add *refptr when
computing *refptr?

For Fun: Vision Demos

(1) Hand Localization
(2) Handwriting Detection

