CS 33 Week 10

Section 1G, Spring 2015
Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

e Lab 4 was due Wednesday

o Last chance to submit: tonight (Friday), 11:55
PM

e Final Exam on Thursday (June 11th)

o Break a leg!

Final Exam

e Thursday, June 11, 2015, 8:00am-11:00am

o Come ~10 minutes early.
e Final Examination Code: 15

e Location: Ackerman Grand Ballroom
e Cumulative (emphasis on post-MT2)

http://smbc-comics.com/index.php?id=2999

Study Resources

TA pages:
Eric: www.eric-kim.net/cs33_page
Uen-Tao: http://www.seas.ucla.edu/~uentao/
He posts his lecture notes too!
Brandon: http://www.cs.ucla.edu/~brandonwu/

Textbook!
Google

http://www.eric-kim.net/cs33_page
http://www.seas.ucla.edu/~uentao/
http://www.cs.ucla.edu/~brandonwu/

Overview

e Linking
e Exceptions/Errors

Compilation Pipeline

cpp code.c code.i // C Preprocessor -> code.l

gcc
gcc
gcc

-S code.1i // Compile C -> code.s
-C code.s // Assemble code.s -> code.o
code.o // Link objfile to make executable

Demo: Show compilation of simple C program

Object Files

$ gcc -c code.c // Compile: outputs objfile code.o

Aka "Relocatable Object Files".

On unix systems, .o files are in ELF format ("Executable and Linkable
Format").

Are binary objects that contain several sections:

header, text, rodata, data, bss, symtable, rel_text, rel data, debug,
line, strtab, footer

Object Files: readelf

Cool trick: Use the readelf program to inspect object files!

$ readelf -a code.o

Symbol table '.symtab' contains 11 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000V © NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 © FILE LOCAL DEFAULT ABS code.c

Object Files: readelf

Can also use readelf on executable files:

$ readelf -a a.out

$ readelf -s code.o // only show symbol table

Linking
gcc code.o // Link objfile to make executable

Generates an executable. Two main steps:
(1) Symbol resolution

(2) Relocation

Linking: Demo

Demo: Show how to use CSAPP functions in
my C programs.

Linking and header files (.h)

// filel.c
#include <stdio.h>
#include "mything.h"

int main() {
float r=fn(3, PI);
printf("%f\n",r);
return 0;

Question: How to
create executable?

// mything.h
double PI ;
float fn(int,double);

// mything.c

double PI = 3.1415;

float fn(int x, double y) {
return x + 2*y;

}

Answer:
$ gcc -cfilel.c
$ gcc -c mything.c
$ gcc -o file1 file1.0 mything.o

Linking and header files (.h)

// filel.c // mything.h
#include <stdio.h> double PI_j;
#include "mything.h" float fn(int,double);
int main() { // mything.c
float r=fn(3, PI_); double PI_ = 3.1415;
printf("%f\n",r); float fn(int x, double y) {
return 0; return x + 2*y;
} }
Question: Why did Answer: C preprocessor copied body of
we not have to mything.h into file1.c, ie check out:

mention mything.h? $ cpp file1.c file1.i

Linking and header files (.h)

// filel.c
#include <stdio.h>
#include "mything.h"

int main() {
float r=fn(3, PI);
printf("%f\n",r);
return 0;

// mything.h
double PI ;
float fn(int,double);

// mything.c

double PI = 3.1415;

float fn(int x, double y) {
return x + 2*y;

¥

Demo: Let's look at the generated symbol tables for file1.0 and mything.o
In file1.0, we see that Pl _is declared as COM (uninitialized global var), and fn is

declared as UNDEF.

Linking and header files (.h)

// filel.c // filelb.c
#include <stdio.h> #include <stdio.h>

#include "mything.h" int main() {
int main() { float r=fn(3, PI);

float r=fn(3, PI); printf("%f\n",r);
printf("%f\n",r); return 0;
return 0; }

¥

Answer: In file1b.c, the symbols

Question: Why does file1.c compile, ~ Pl_,fn are not declared anywhere.

but file1b.c not compile? What step ~ This Is caught by the assembler, ie:

of compilation process does file1b.c $ gcc -Sfilelb.c
fail? ERROR

Linking and header files (.h)

// filel.c // mything.h
#include <stdio.h> double PI_;
#include "mything.h"

int main() {
float r=fn(3, PI);
printf("%f\n",r);

// mything.c
double PI_ = 3.1415;
float fn(int x, double y) {

return 0;
return x + 2%*y;
}
}
Question: Whatif ~ Answer: Still compiles! But get wrong answer: C assumes int
we removed return value for undeclared functions that are found at link time:
declaration of fn() http://stackoverflow.com/questions/9780930/correct-answer-
in mything.h? before-return-incorrect-after-return

(Really weird!)

http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return
http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return
http://stackoverflow.com/questions/9780930/correct-answer-before-return-incorrect-after-return

Mismatched function prototypes

For fun reading, check out this post that explores what happens
when a function prototype disagrees with the actual function
definition:
http.//stackoverflow.com/questions/15137702/function-prototype-
in-header-file-doesnt-match-definition-how-to-catch-this

http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this
http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this
http://stackoverflow.com/questions/15137702/function-prototype-in-header-file-doesnt-match-definition-how-to-catch-this

Static vs Dynamic Linking

Two ways to link a program, each with its pros
and cons.

Static Linking

Specify object file at compilation time. Ex: Here, mything.o
Is statically linked to file1:

$ gcc filel.o mything.o

For larger projects:

$ gcc -static vlc.o libpng.a libmpg.a libmp4.a
libmp3.a ...

Creating Libraries: ar

Suppose | have two files: add.c, mult.c

Can package their .o files into a single .a file:
$ gcc -c add.c mult.c
$ ar rcs libek.a add.o mult.o

(libek.a is basically add.o concatenated with mult.o)
Can use it later during linking:
$ gcc -o main main.c ./libek.a

Source files main2.c vector.h

L

Translators

(cpp, ccl, as)| libvector.a libc.a Static libraries
Relocatable main2.o addvec.o printf.o and any other
object files \ modules called by printf .o
Linker (1d)

p2 Fully linked
executable object file

Figure 7.7 Linking with static libraries.

Demo [week10_slink]: add.c, mult.c, main.c, etc.
/main is statically linked

Question: Why is ./main much larger than ./mains?

Static Linking: Pros/Cons

Pros
- Consistent behavior across systems.
- Simple!

Cons
- Larger executable size. Ex: libc.a is ~8MB!

- If a library has an update (libmp3.a), then we have to re-link the project to
include the updated library.

- For common libs (ie libc), each process has a copy in memory. Wasteful!
- Can't share libraries with other processes (discuss later)

Dynamic Linking

Static: Load all libraries into executable during compile
time.

Dynamic: Load library(s) into executable while loading
program!

Has a number of benefits.

Shared Libraries: .so and .dll

By design, shared (ie dynamic) libraries are loaded during
runtime, when OS loads program into memory.

.50: "Shared Obiject" [unix]
dIl: "Dynamic Link Library" [windows]

(In unix, can create shared libraries with gcc!)

Dynamic Linker

As OS loads program into memory, if it notices
program refers to dynamic library (.interp, .
dynsym, etc), then it will invoke dynamic linker.

main2.c vector.h

Figure 7.15
Dynamic linking with l l
shared libraries. Translators
(cpp,ccl,as) libc.so
libvector.so
Relogatat;le main2.o Relocation and
object file l symbol table info
Linker (1d)
Partially linked 12
executable object file P
Loader _
(execve) ~libc.so
libvector.so
l l Code and data

Fully linked

executable in memory Dynamic linker (1d-1inux. so)

"DLL Hell”

Shared libs are now decoupled from executable.

Scenario: | download VLC 2.1.0, which assumed libmpeg2
(v1.1). Then, | upgrade libmpeg?2 to v1.2, because 1.2 is
much faster and less buggy.

Problem: VLC might now be broken!
DLL Hell!

Dynamic Linking: Pros/Cons

Pros
Smaller executable.
Processes can share libraries, save memory!

Cons
Possible instabilities ("DLL Hell")
More complicated behavior during load time (due to dynlinker).

Demo: Static vs Dynamic Linking

Check: week10_slink/*
Things to check:
1. mains, maind
2. How to create static/shared libs
3. Relative sizes of mains, maind
4. readelf/objdump --reloc -d of mains/maind

Object File (Contents)

(We only consider x86 ELF format)
Contains several sections in binary format.

$ gcc -c -o myobjfile.o main.c

f

(relocatable) object file! Not an
executable yet!

Object File (Contents)

|s actually
empty!

(Not shown: Header and Footer)

text

rodata

data

bss

symtable

rel_text

rel_data

debug

line

strtab

text: instructions for *this*
module, ie any functions
defined in this file.

bss

symtable

rel text

rel _data

rodata: Read-only data.
Example: constant strings
declared in your
programs.

int main() {
char* msg = "Hello!\n";
printf(msg);
return 0;

bss

symtable

rel text

rel_data

data: Read/write data that
Is initialized by user.
Example: static initialized
variables (ie file-level).

// code.c /
int PI_APPROX = 3.1415

int answer; symtable

1nt main() { rel_text

} rel_data

bss: Read/write data that
Is uninitialized by user.
Example: static
uninitialized variables.

// code.c
int PI_APPROX = 3.1415
int answer;

iéé main() {

}

SS

symtable

rel_text

rel _data

Ilem pty"

bss section: "Better Save Space”

bss section only contains length, ie # bytes of bss data
there is.

Thus, object file does not actually set aside space for these
uninitialized file-scope variables.

However, when the program is executed, the .bss section is
allocated on the stack zero'd out.

symtable: Information about
symbols:

(1) What symbols | define

(2) What symbols are undefined

SS
symtable

rel text

rel _data

symtable

// filel.c
#include <stdio.h>
extern float PI;

void main() {
printf("pi=%f\n",PI);
}

Question: What do the symtables
look like for both file1.0 and file2.0?

// file2.c
float PI = 3.1415;

Demo: Show symtables for file1.
o, file2.0

Answer: file1.0 declares
main(), but claims PI, printf are
undefined.

file2.0 declares PI.

symtable

$ readelf -s filel.o

Ndx: The section index. # can have diff meaning
for different objfiles! 1: text

Symbol table '.symtab' contains 12 entries:

Num: Value
0: 00DV
1: 000000V

9: 0000000000V
19: 0000000000000
11: ©000000000000000

Size Type
© NOTYPE
© FILE

38 FUNC
© NOTYPE
© NOTYPE

Bind
LOCAL
LOCAL

GLOBAL
GLOBAL
GLOBAL

\

Vis
DEFAULT
DEFAULT

DEFAULT
DEFAULT
DEFAULT

Ndx Name
UND
ABS filel.c

1 main
UND PI
UND printf

symtable

Ndx: The section index.
1: text 2: data 3: bss

$ readelf -s file2.o0
Symbol table '.symtab' contains 8 entries:

Num: Value Size Type Bind Vis Ndx Name
0: 0000V © NOTYPE LOCAL DEFAULT UND
1: 00000000V © FILE LOCAL DEFAULT ABS file2.c

7. 0000000000000000 4 OBJECT GLOBAL DEFAULT 2 PI

rel text: Locations in .text that
must be relocated.

Ex: Any inst that calls an
externally-defined function.

data

symtable
rel text

rel_data

debug

line

strtab

rel_data: Locations in .data that
must be relocated.

Ex: Any initialized global variable
whose initial value is the addr of a
global variable or externally-
defined function.

data

symtable
rel_text

rel _data

debug

line

strtab

debug: Contains information for
debugger.

line: Maps btwn machine code
insts and C source code lines.

For both debug+line, must use
-g compiler option.

data

SS
symtable
rel_text

rel _data

debug

line

strtab

strtab: String table. Contains
the human-readable string for
each symbol in symtable and
debug.

data

symtable
rel text

rel_data

debug

line

strtab

Symbol Resolution, Relocation

During compilation, need to know
(1) What symbols are defined (and where)
(2) What run-time addresses to assign to each symbol

Key: Need to handle multiple files, each referring to each
other.

Symbol Resolution

$ gcc -c code.s
ldea: At assemble time, want to know:
(1) Which symbols do | define?

(2) Which symbols are defined in other files?

Basically: Creates the .symtable section of the object file.

Quick Example

// filel.c Question: Which symbols are
#include <stdio.h> completely resolved during symbol
extern int counter, var; resolution ($ gcc -c file1.c)? Which

float PI = 3.1415; symbols are declared as UNDEF?

int fn(x){ return x + var; }

int main() { Answer:
printf("%f\n", fn(counter)+PI); Resolved: PI, fn, main.
Undefined: counter, var
return 9;

Strong vs Weak Symbols

Mechanism to handle multiple definitions of the same
global symbol.

Basic: "strong" symbols trump "weak" symbols.
Can't have >1 "strong" symbols for same symbol (error).

For details, read Textbook (Ch. 7.6.1, pg 664).

Relocation

Occurs after Symbol Resolution.

At this point, linker knows the exact sizes of code/data
sections.

Next: Assign run-time addresses to each symbol!

objdump

Can use objdump to view *unrelocated™ symbols.

$ objdump -d --reloc filel.o
Disassembly of section .text:
0000000 <main>:

9:

O o wER

14:
18:
1b:

20:
21:

55
89
83
83
do

b8
dd
89
e8

c9
c3

push
e5 mov
e4 fo and
ec 10 sub
05 00 00 00 00 flds
b: R_386_32 PI
00 00 00 00 mov
10: R _386_32 .rodata
5c 24 o4 fstpl
04 24 mov
fc ff ff ff call
1c: R_386_PC32printf
leave
ret

%ebp

%esp,%ebp
$oxfFfo,%esp
$0x10, %esp

0x0

$0x0, %eax
ox4(%esp)

%eax, (%esp)
1c <main+0@x1c>

objdump

Contrast with fully-linked (relocated) executable:

$ objdump -d --reloc filel
Disassembly of section .text:
080483e4 <main>:

80483e4: 55 push %ebp

80483e5: 89 e5 mov %esp,%ebp
80483e7: 83 e4 0 and $oxfFfo,%esp
80483ea: 83 ec 10 sub $0x10, %esp
80483ed: d9 05 14 a0@ 04 08 flds 0x804a014
8048313: b8 e0 84 04 08 mov $0x80484e0, %eax
80483f8: dd 5c 24 04 fstpl ©0x4(%esp)
80483fc: 89 04 24 mov %eax, (%esp)
80483ff: e8 fc fe ff ff call 86048300 <printf@plt>
8048404: c9 leave

8048405: c3 ret

Relocation Algorithm

Relocation effectively performs the previous transformation,
via a fixed-point algorithm.

For details on relocation algorithm itself, read Ch. 7.7 (pgs
672-677). Algorithm itself is on pg. 674 (Fig. 7.9).

Questions you should consider:
(1) Convince yourself that the algorithm always terminates.

(2) On lines 8,13, why do | have to add *refptr when
computing *refptr?

For Fun: Vision Demos

(1) Hand Localization
(2) Handwriting Detection

