CS 33: Week 3 Discussion

x86 Assembly (v1.0)
Section 1G



Announcements

- HW2 due Sunday
- MT1 this Thursday!
- Lab2 out



Info

Name: Eric Kim (Section 1G, 2-4 PM, BH 5419)
Office Hours (Boelter 2432)

- Wed (3-4 PM)

- Thurs (12-1 PM)

Feel free to e-mail me at: erickim555@gagmail.com



mailto:erickim555@gmail.com

This Week...

- More x86 assembly fun



Exercise: Fun with arithmetic

Section 3.5 Arithmetic and Logical Operations 181

(a) C code
\ int arith(int x,
2 int y,
int z)
4 A
int tl = x+y;
int t2 = z*48;
int t3 = t1 & OxFFFF;
int t4 = t2 * t3;
9 return t4;
0}

Figure 3.8 C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

Convert this function to x86. Assume that: x at %ebp+8, y at %ebp+12, z at %ebp+16.
Recall: addl src dst, imull src dst, andl src dst.



Exercise: Fun with arithmetic

Section 3.5 Arithmetic and Logical Operations 181

(a) C code (b) Assembly code

1 int arith(int x, x at %ebp+8, y at %ebp+12, z at Yebp+1€

2 int vy, mov1l 16 (%ebp), %heax z

3 int z) 2 leal (%eax,%eax,2), heax  z+3

4 { 3 sall $4, Yeax t2 = z*48

5 int tl1 = x+y; 4 movl 12(%ebp), %edx

6 int t2 = zx48; 5 addl 8 (%ebp) , %edx t1 = x+)
int t3 = t1 & OxFFFF; 6 andl $65535, %edx t3 t 1& OxFFFF
int t4 = t2 * t3; 7 imull  %edx, %eax Return t4 2

9 return t4;

10 }

Figure 3.8 C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

Does this make sense? Note the usage of 1eal and sall, rather than simply using imull.
Using imull isn't wrong - but it's good to be able to see why both approaches work!



Function Calling Convention



Function Frames

- When a function is called, a section of the
stack is set aside for the function.

- Represented by two registers: the base
pointer (%ebp) and the stack pointer (%esp).



%ebp: base pointer

- Points to the "beginning” of the function's
stack frame.

- Should not change during function execution,
unless another function call is made.



%ebp: Accessing Arguments

- Suppose f() calls g(x,y). Then, g can access
its arguments X,y via %ebp:

- X is at 8(%ebp), and y is at 12(%ebp)



%ebp

- What's at 0(%ebp) and 4(%ebp)?

- %ebp points to the saved %ebp, ie the f's
base pointer.

- Need to set %ebp to the f's %ebp before
returning from g! More on this later.



%ebp

- 4(%ebp) points to the saved return address, |.
e. the next instruction to execute after returning
from the function.

- The command ret updates the %eip
(Instruction Pointer)



%esp: Stack Pointer

- Points to the "end" of the function frame.

- All of a function's local variables are stored
between %ebp and %esp



%esp - Static Allocation

- At the start of a function, we allocate all
required storage of local/temp variables by
updating %esp



OXFFFFFFFF

The Stack

- Contains local variables
- LIFO

- Grows “downward”

- Organized in frames

<& Stack Pointer

TEXT (code)

0x00000000




The Stack: pushl and popl

- pushl <SRC>
- subl $4, %esp
- movl <SRC> (%esp)
- popl <DST>
- movl (%esp) <DST>
- addl $4 %esp

pushl, popl are
convenience commands.
Could simply use subl,
movl,addl, etc. But you'd
raise some eyebrows.



Addresses

The Stack grow down

Consider the following l STACK
stack.

What happens when |

. Ox7fff401c
do:

pushl %ebp

%esp = 0x744401C
%ebp = 0x12C
%edx = 0x800448B




The Stack

Addresses
grow down

|

Ox7fff401c

Ox7fff4018

%esp = 0x7444018
%ebp = 0x12C
%edx = 0x800448B

0x00000012c




The Stack

What happens when |
do:

popl Y%edx

Addresses
grow down

|

Ox7fff401c

0x7fff4018

%esp = 0x7444018
%ebp = 0x12C
%edx = 0x800448B

STACK

0x00000012c




Addresses

The Stack grow don

|

Ox7fff401c




Addresses

The Stack grow dowin

- How do we create frame l
abstractions for procedures?

Ox7fff401c

%esp = 0x744401C
%ebp = 0x12C
%edx = 0x12C

STACK




Stack Frames

Caller Frame

- %ebp

- base pointer
- bottom of frame

- %eip

- Instruction pointer Current.:rame{

%ebp >

%esp >




x86 Calling Conventions

- Caller saved registers
- pushed to the stack before function call is made
- restored after the callee exits

- %eax, %ecx, Y%edx
- arguments: $0x8(%ebp), %0xc(%ebp), %0x10(%ebp) ...

- Callee saved reqisters
- pushed to the stack at the start of the function
- restored before the callee exits

- %ebx, %edi, %esi
- return value in %eax



Even More Assembly

- call <label>

- pushl %eip

- movl <label (function address)> %eip
- leave

- movl %ebp, %esp

- popl %ebp
- ret

- popl %eip



Example: Function Call

int () { In main():
int x = 42; f();
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

¥



Addresses

Example: Function Call grow down
%ebp —» l
int 'F() { main() main's locals
int x = 42 %esp > Ox7FFFFABC4

int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

In main(), about to call f().

¥



Example: Function Call

int () {
int x = 42;
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

%ebp —»
main()

%esp >

Addresses
grow down

main's locals

|

Ox7FFFFABC4

In main(), about to call f().
1. Prepare arguments to f().



Addresses

Example: Function Call grow down
%ebp —» l
int 'F() { main() main's locals
int x = 42; %esp > Ox7FFFFABC4

int foo = g(x);
return foo + 5;

¥

int g ( int n um) { In main(), about to call ().
r‘et urn n um+1@; 1. Prepare arguments to f(). No arguments!



Addresses

Example: Function Call ... cemeee ™"

int f() {
int x = 42;
int foo = g(x);
return foo + 5;

¥
int g(int num) {

return num+10;

%ebp —»
main()

%esp =

main's locals

|

Ox7FFFFABC4

In main(), about to call f().
1. Prepare arguments to f().

2. Call f()



Addresses

Example: Function Call ... cemeee ™"

%ebp —» l
int -F() { main() main's locals
int X = 42, %esp > OxX7FFFFABC4
- )

int foo = g(x);

Assume instruction after call to g(x) is at

return foo + 5; location: Ox0800BEE4

Assume first instruction of g is at location:
} Ox0800F00D

int g(int num) { In main(), about to call f().

return num+10; 1. Prepare arguments to f(). call f
2. Call ()



Example: Function Call

int () {
int x = 42;
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

Addresses

grow down
%eip: 0x0801F00D
%ebp —» l
main() main's locals
) OxOSOOBEEA OX7FFFFABC4
%esp >

In main(), about to call f().

1. Prepare arguments to f().

2. Call f()

call f



Addresses

- - grow down
Example: Function Call ... c.cseiree
%ebp —» l

int .F() { main() main's locals

int x = 42; Yesp — Ox0800BEE4 Ox7FFFFABCA

int foo = g(x);

return foo + 5;
int g(lnt num) { In main(), about to call f().

return num+1@; 1. Prepare arguments to f(). call f

2. Call f()

} 3. f() is now "in control"



Addresses

. 1 row do
Example: Function Call ... cesrem """
%ebp —» l
int 'F() { main() main's locals
int x = 42 ; yosp _ OXOSOOBEEA Ox7FFFFABC4
int foo = g(x);
return foo + 5; %ebp = @x7FFFFACE
1nt g(lnt num) { f() -- setup stack frame
return num+10; 1. Save caller's %ebp pushl %ebp



Example: Function Call

int () {
int x = 42;
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

Addresses

grow down
%eip: 0x0801F00D
%ebp —» l
main() main's locals
OxOSOOBEEA OX7FFFFABC4
o OxX7FFFFACE
%esp >

f() -- setup stack frame

1. Save caller's %ebp

pushl %ebp



Addresses

Example: Function Call ..;ceeirem ™"

%ebp —» l
int 'F() { main() main's locals
int x = 42; T r— Ox7FFFFABC4
. Yos . Ox7FFFFACE
int foo = g(x); kesp

return foo + 5;

¥

int g(int num) { f() -- setup stack frame

return num+10; 1. Save caller's %ebp movl %esp %ebp
2. Update %ebp to point to *my*
} frame base.



Addresses

Example: Function Call ..;ceeirem ™"

int 'F() { main() main's locals l
int x = 42; T r— Ox7FFFFABC4
. %ebp OxX7FFFFACE
int foo = g(x); Yesp —>

return foo + 5;

¥

int g(int num) { f() -- setup stack frame

return num+10; 1. Save caller's %ebp movl %esp %ebp
2. Update %ebp to point to *my*
} frame base.



Addresses

Example: Function Call ..;ceeirem ™"

int .F( ) { main() main's locals l
int X = 42; OxOSOOBEEA OxX7FFFFABC4
. %ebp OX7FFFFACE
int foo = g(x); hesp —>

return foo + 5;

¥

int g(int num) { f() -- setup stack frame

return num+1@; 1. Save caller's %ebp
2. Update %ebp to point to *my*
} frame base.
3. Allocate space for local

bl $8 %
variables >4 * €>P



Example: Function Call

int () {
int x = 42;
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

Addresses

grow down
%eip: 0x0801F00D l
main() main's locals
Ox7FFFFABC4
OX080OBEE4 X
%ebp > Ox7FFFFACE
f local vars
%esp >

Note: Depending on how clever the
compiler is, it may not allocate
stack space for *all* local vars if it

do it with registers.
f() -- setup stack frame can do It with registers

1. Save caller's %ebp

2. Update %ebp to point to *my*
frame base.

3. Allocate space for local

bl $8 %
variables >4 * €>P



Example: Function Call

int f() {
int x = 42;
int foo = g(x);
return foo + 5;

}
int g(int num) {

return num+10;

%eip: 0x0801F010

main() main's locals
Ox0800BEE4
%ebp > Ox7FFFFACE
¥ local vars
%esp >
f() executes its code, and is
about to call g(). pushl $eax

1. Prepare arguments to g

Addresses
grow down

|

Ox7FFFFABC4



Addresses

Example: Function Call ... cese0 ™"

int -F() { main() main's locals l
int x = 42; OXx@80OBEE4 Ox7FFFFABCA
. 'F %ebp - Ox7FFFFACE
Int too = g(X, 1) ) f local vars
return foo + 5; Yesp —— g argl: 1

¥

int g(lnt n, int a) { f() executes its code, and is
return num+10; about to call g(). pushl 1

1. Prepare arguments to g pushl $eax



Addresses

Example: Function Call ... cese0 ™"

int 'F( ) { main() main's locals l
i nt X = 42 ; SRR OxX7FFFFABC4
] %ebp . OX7FFFFACE
int foo = g(X, 1) p) f local vars
return foo + 5; g argl: 1
} %esp g argo: 42

int g(lnt n, int a) { f() executes its code, and is
return num+10; about to call g(). pushl 1

1. Prepare arguments to g pushl $eax



Addresses

Example: Function Call ... cese0 ™"

int 'F( ) { main() main's locals l
int X = 42; SRR OxX7FFFFABC4
] %ebp . OX7FFFFACE
int foo = g(X, 1) p) f local vars
return foo + 5; g argl: 1
} %esp g argo: 42

int g(lnt n, int a) { f() executes its code, and is
return num+10; about to call g(). call g

1. Prepare arguments to g

_ _ 2. Call g (saves %eip).
Assume f's next instruction

is at ox0801F014



Addresses

Example: Function Call ... cese0 ™"

int -F( ) { main() main's locals l
int x = 42; OXx0300BEE4 Ox7FFFFABCA
. 'F . %ebp - OX7FFFFACE
int 00 = g(X,l), f local vars
return foo + 5; g argl: 1
g argo: 42
} %esp ) f saved eip: Ox0801F014

int g(lnt n, int a) { f() executes its code, and is
return num+10; about to call g(). call g

1. Prepare arguments to g

_ _ 2. Call g (saves %eip).
Assume f's next instruction

is at ox0801F014



Example: Function Call

int ()
int x = 42;

int foo = g(x,1);

return foo + 5;

}
int g(int n, int a) {
return num+10;

Assume f's next instruction
is at ox0801F014

%eip: 0x0800FEED

Addresses
grow down

main() main's locals

|

OX0800BEE4

Ox7FFFFABC4

Ox7FFFFACE

%ebp [
f local vars

g argl: 1

g argo: 42

%esp ) f saved eip: Ox0801F014

f() executes its code, and is
about to call g().

1. Prepare arguments to g
2. Call g (saves %eip).

3. g is in control now!

call g



Addresses

n - grow down
Example: Function Call e eeseorce l
int -F() { main() main's locals

int x = 42; OX080@BEEA Ox7FFFABCA
. t 'F _ 1 . %ebp > OxX7FFFFACE
1N 00 = g(X, )’ f local vars
return foo + 5; g argl: 1
g argo: 42
} %esp ) f saved eip: Ox0801F014
int g(int n, int a) {
return num'l'l@; g must setup its stack frame.

} 1. Save caller's %ebp. pushl %ebp



Example: Function Call

int 'F() { main()
int x = 42;

Addresses

grow down
%eip: 0x0800FEED
main's locals l
OxOSOOBEEA Ox7FFFABC4
OX7FFFFACE

int foo = g(x,1); *%* —~
return foo + 5;

¥

int g(int n, int a) { ‘s —

f local vars

g argl: 1

g argo: 42

f saved eip: Ox0801F014

f saved ebp: Ox7FFFABDC

return num+10; g must setup its stack frame.
} 1. Save caller's %ebp. pushl %ebp



Example: Function Call

int () {
int x = 42;
int foo = g(x,1);
return foo + 5;

}
int g(int n, int a) {
return num+109;

main()

Addresses

grow down
%eip: 0x0800FEED
main's locals l
OxOSOOBEEA Ox7FFFABC4
OX7FFFFACE

%ebp [

»esp ——»

f local vars

g argl: 1

g argo: 42

f saved eip: Ox0801F014

f saved ebp: Ox7FFFABDC

g must setup its stack frame.

1. Save caller's %ebp.

2. Update %ebp to point to *my*

frame base.

movl %esp %ebp



Addresses

n grow down

Example: Function Call i owsoorceo l
int -F() { main() main's locals

int x = 42; OXx@80OBEE4 Ox7FFFABCA

. OX7FFFFACE

int foo = g(X, 1) ) f local vars

return foo + 5; g argl: 1

g argo: 42

} %eb f saved eip: 0x0801F014
. . . %ebp :
int g(lnt n, int a) { %esp T | f saved ebp: Ox7FFFABDC

return num'l'l@; g must setup its stack frame.
} 1. Save caller's %ebp. movl %esp %ebp

2. Update %ebp to point to *my*
frame base.



Example: Function Call

int () {
int x = 42;

int foo = g(x,1);

return foo + 5;

}
int g(int n, int a) {
return num+109;

%eip: 0x0800FEED

Addresses
grow down

main() main's locals

|

OX0800BEE4

Ox7FFFABC4

Ox7FFFFACE

f local vars

g argl: 1

g argo: 42

f saved eip: Ox0801F014

%ebp

f saved ebp: Ox7FFFABDC

resp —»

g must setup its stack frame.

1. Save caller's %ebp.

2. Update %ebp to point to *my*
frame base.

3. Allocate space for local vars.



Addresses

n grow down
Example: Function Call i eeseerze l
int .F() { main() main's locals
int X = 42; OxOSOOBEEA OX7FFFABC4
. OxX7FFFFACE
int -FOO = g(X,l), f local vars
return foo + 5; g argl: 1
g argo: 42
} wab f saved eip: Ox0801F014
. . . %ebp :
int g(lnt n, int a) { %osp T | f saved ebp: Ox7FFFABDC
return n+1@3 g must setup its stack frame.
} 1. Save caller's %ebp.
2. Update %ebp to point to *my*
frame base. No local vars!

3. Allocate space for local vars.



Addresses

- u grow down

Example: Function Call i oscerceo l
int -F() { main() main's locals

int x = 42; Ox080OBEE4 Ox7FFFABCA

. . DG FIFAELE @x7FFFABDC

int foo = g(X, 1) ) f local vars

return foo + 5; g argl: 1

g argo: 42

} %eb f saved eip: Ox0801F014
o . o %e P -
int g(lnt n, int a) { Yesp 3 f saved ebp: Ox7FFFABDC

return n+1@3 g() finishes, now must return. This is %ebp!
} 1. Set %esp to caller's original %

esp. movl %ebp %esp

2. Set %ebp to caller's original %
ebp. popl %ebp



Addresses

n - grow down
Example: Function Call e eeseorce l
int -F() { main() main's locals
int x = 42; OXO800BEE4 OX7FFFABCA
Ox7FFFFACE
: _ . %ebp > Ox7FFFABDC
int foo = g(X,l), f local vars
return foo + 5; g argl: 1
g argo: 42
} %esp f saved eip: Ox0801F014
int g(int n, int a) {
return n+1@3 g() finishes, now must return. This is %ebp!
} 1. Set %esp to caller's original %
esp. movl %ebp %esp

2. Set %ebp to caller's original %
ebp. popl %ebp



Addresses

. m grow down
Example: Function Call e eeseorce l
int -F( ) { main() main's locals
int x = 42; OXO800BEE4 OX7FFFABCA
Ox7FFFFACE
. _ . %ebp > Ox7FFFABDC
int foo = g(X,l), f local vars
return foo + 5; g argl: 1
g argo: 42
} %esp f saved eip: Ox0801F014
int g(int n, int a) {
return n+10; g() finishes, now must return. Pops top of stack,
} 1. Set %esp to caller's original % ﬁ)la?es value into
esp. %eip.
2. Set %ebp to caller's original %
ebp.

3. Return to caller. ret



_ Addresses
f in control now!

. - grow down
Example: Function Call e eweserrer l
int -F( ) { main() main's locals
int x = 42; 0x0300BEE4 Ox7FFRABCA
Ox7FFFFACE
. _ . %ebp > Ox7FFFABDC
int foo = g(X,l), f local vars
return foo + 5; g argl: 1
} %esp > g argo: 42
int g(int n, int a) {
return n+10; g() finishes, now must return. Pops top of stack,
} 1. Set %esp to caller's original % ﬁ)la?es value into
esp. %0eip.
2. Set %ebp to caller's original %
ebp.
ret

3. Return to caller.



Addresses

i - grow down

Example: Function Call e eeserres l
int -F() { main() main's locals

int x = 42; OXx@80OBEE4 Ox7FFFABCA

Ox7FFFFACE

: _ . %ebp > Ox7FFFABDC

int foo = g(X, 1) ) f local vars

return foo + 5; g argl: 1
} %esp > g argo: 42

int g(int n, int a) {
return n+10; f() resumes executing.



Addresses

n - grow down
Example: Function Call e eeserres l
int -F() { main() main's locals
int x = 42 ; main eip: Ox@80@BEE4 Ox7FFFABCA
. _ . %ebp > main ebp: Ox7FFFFACE Ox7EEEABDC
int foo = g(X, 1) ) f local vars
return foo + 5; g argl: 1
} %esp > g argo: 42

int g(int n, int a) {

return n+1@3 f() is ready to return.
} 1. Update %esp to caller's %esp. Mmovl %ebp %esp



Addresses

n - grow down
Example: Function Call e eeserres l
int -F() { main() main's locals
int x = 42 ; main eip: Ox@80@BEE4 Ox7FFFABCA
main ebp: Ox7FFFFACE ox7EEEABDC

int foo = g(x,1); jsor —=

return foo + 5;

}
int g(int n, int a) {

return n+1@3 f() is ready to return.
} 1. Update %esp to caller's %esp. Mmovl %ebp %esp



Addresses

n - grow down
Example: Function Call e eeserres
@i7FFFFACE
int -F() { main() main's locals
int x = 42 ; main eip: Ox@80@BEE4 Ox7FFFABCA
main ebp: Ox7FFFFACE ox7EEEABDC

int foo = g(x,1); jsor —=

return foo + 5;

}
int g(int n, int a) {

return n+1@3 f() is ready to return.

} 1. Update %esp to caller's %esp.

2. Update %ebp to caller's %ebp.
popl %ebp



Addresses

= grow down
Exam ple: Fu nCtlon Ca" %eip: Ox0801F014
%ebp > @i7FFFFACE
int 'F( ) { main() main's locals
int X = 42; %esp - main eip: OxO800OBEE4 Ox7FFFABCA

int foo = g(x,1);
return foo + 5;

}
int g(int n, int a) {

return n+1@3 f() is ready to return.

} 1. Update %esp to caller's %esp.

2. Update %ebp to caller's %ebp.
popl %ebp



Addresses

= grow down
Exam ple: Fu nCtlon Ca" %eip: Ox0801F014
%ebp > @i7FFFFACE
int 'F( ) { main() main's locals
int X = 42; %esp - main eip: OxO800OBEE4 Ox7FFFABCA

int foo = g(x,1);
return foo + 5;

}
int g(int n, int a) {

return n+1@3 f() is ready to return.

} 1. Update %esp to caller's %esp.
2. Update %ebp to caller's %ebp.
3. Return control to caller.

ret



Addresses

i main() in control! grow down
Example: Function Call i exsoesee
%ebp > @%FFFFACE

int .F( ) { main() main's locals

int X = 42; %esp - Ox7FFFABC4

int foo = g(x,1);

return foo + 5;
int g(int n, int a) {

return n+1@3 f() is ready to return.
} 1. Update %esp to caller's %esp.

2. Update %ebp to caller's %ebp.
3. Return control to caller.

ret



Example: Function Call

int () {
int x = 42;
int foo = g(x,1);
return foo + 5;

}
int g(int n, int a) {
return n+10;

Addresses

main() in control! grow down
%eip: 0X0800BEE4
%ebp > @%FFFFACE
main() main's locals
%esp > OX7FFFABC4

main() resumes executing where
it left off, and finishes its
awesome computation.

call f
# here now



Conditional Jumps

je, jz --jump if equal/zero

jne, jnz -- jump if not-equal/not-zero

jl, jle --jump if less than/less-than-or-equal

jg, jge -- jump if greater than/greater-than-or-equal

Several more jump types (ie overflow, sign, parity, etc.).



cmp

Use cmpl, testl to use the conditional jump!

cmpl %eax %edx
jge .L2

Jumps to .L2 if %eax <= %edx



testl

testl %eax, %eax

jz zerolLabel; jump if %eax 1s zero

js neglLabel ; jump if EAX 1s negative
jns posLabel ; jump if EAX 1s positive

Quick way to check if a register is 0, negative,
or positive.



Compiling at Home

Try creating assembly output yourself!
$ gcc -m32 -S -00 -0 code.s code.c

/NN N

Use x86 (ie

: Compile to
32-bit mode) assembly Do least Save Input C source
amount of file. Your code
optimizations ggz:rfélef o: here!

code.s



Compiling at Home

Add this flag to disable weird lines with .cfi_ junk:

$ gcc -m32 -S -00 -fno-asynchronous-unwind-tables -o code.s code.c



Compiling at Home

Full pipeline to compile .c code -> .s -> executable.

# Compile: generates assembly from c code

gcc -S -m32 -00 -fno-asynchronous-unwind-tables -o printint.s printint.c
# Assemble: generates object file from assembly

gcc -c -m32 -o printint.o printint.s

# Linker: generates executable from object file

gcc -m32 -o printint printint.o

Use last two commands to create executables of your
own x86 code!



Midterm

- ~9 questions
- Open book

- Covers:
- Integers: §1-§2.3, §2.5
- Assembly: §3—-§3.5, §3.13
- Control: §3.6
- Procedures: §3.7
- Data structures: §3.8-§3.10
- Pointers: §3.11, §3.12, §3.15
- Lab 2 and HW3



The Bad News

- The midterm doesn’t exist yet

- You won't find the answers in your book
- “What if” questions
- “No right answer” questions
- “Explain your reasoning”
- Multi-topic questions
- Essentially a timed take-home assignment

(minus ability to google/stackoverflow)



Tips
- Practice problems from the book, labs

- Condense your notes to save time
- Think like the professor

- Take note of tangents to the lecture material
- Why would he choose one HW problem over another?

- “Come up with more efficient calling conventions for
performing multiple precision arithmetic”

- “Count the number of transitions from 0 to 1 when
counting the bits of an integer from right to left.”
- Brina a calculator



More Practice <

- Bit Manipulation:
- 2.67,2.73,2.75

- Reverse Engineering Assembly:
- 3.62, 3.63, 3.65, 3.66, 3.58

- Procedures x Data Structures:
- 3.64



