
CS 33: Week 3 Discussion
x86 Assembly (v1.0)

Section 1G

Announcements

- HW2 due Sunday
- MT1 this Thursday!
- Lab2 out

Info

Name: Eric Kim (Section 1G, 2-4 PM, BH 5419)
Office Hours (Boelter 2432)
- Wed (3-4 PM)
- Thurs (12-1 PM)

Feel free to e-mail me at: erickim555@gmail.com

mailto:erickim555@gmail.com

This Week...

- More x86 assembly fun

Exercise: Fun with arithmetic

Convert this function to x86. Assume that: x at %ebp+8, y at %ebp+12, z at %ebp+16.
Recall: addl src dst, imull src dst, andl src dst.

Exercise: Fun with arithmetic

Does this make sense? Note the usage of leal and sall, rather than simply using imull.
Using imull isn't wrong - but it's good to be able to see why both approaches work!

Function Calling Convention

Function Frames

- When a function is called, a section of the
stack is set aside for the function.
- Represented by two registers: the base
pointer (%ebp) and the stack pointer (%esp).

%ebp: base pointer

- Points to the "beginning" of the function's
stack frame.
- Should not change during function execution,
unless another function call is made.

%ebp: Accessing Arguments

- Suppose f() calls g(x,y). Then, g can access
its arguments x,y via %ebp:

- x is at 8(%ebp), and y is at 12(%ebp)

%ebp

- What's at 0(%ebp) and 4(%ebp)?
- %ebp points to the saved %ebp, ie the f's

base pointer.
- Need to set %ebp to the f's %ebp before

returning from g! More on this later.

%ebp

- 4(%ebp) points to the saved return address, i.
e. the next instruction to execute after returning
from the function.
- The command ret updates the %eip
(Instruction Pointer)

%esp: Stack Pointer

- Points to the "end" of the function frame.
- All of a function's local variables are stored
between %ebp and %esp

%esp - Static Allocation

- At the start of a function, we allocate all
required storage of local/temp variables by
updating %esp

The Stack

- Contains local variables
- LIFO
- Grows “downward”
- Organized in frames

int fact()
void func()
int main()

int fact()
int fact() Stack Pointer

The Stack: pushl and popl

- pushl <SRC>
- subl $4, %esp
- movl <SRC> (%esp)

- popl <DST>
- movl (%esp) <DST>
- addl $4 %esp

pushl, popl are
convenience commands.
Could simply use subl,
movl,addl, etc. But you'd
raise some eyebrows.

Consider the following
stack.
What happens when I
do:

pushl %ebp

The Stack

%esp = 0x744401C
%ebp = 0x12C
%edx = 0x800448B

Addresses
grow down

The Stack

%esp = 0x7444018
%ebp = 0x12C
%edx = 0x800448B

Addresses
grow down

What happens when I
do:

popl %edx

The Stack

%esp = 0x7444018
%ebp = 0x12C
%edx = 0x800448B

Addresses
grow down

The Stack

%esp = 0x744401C
%ebp = 0x12C
%edx = 0x12C

Addresses
grow down

- How do we create frame
abstractions for procedures?

The Stack

%esp = 0x744401C
%ebp = 0x12C
%edx = 0x12C

Addresses
grow down

Stack Frames

- %ebp
- base pointer
- bottom of frame

- %eip
- instruction pointer Current Frame

x86 Calling Conventions
- Caller saved registers

- pushed to the stack before function call is made
- restored after the callee exits
- %eax, %ecx, %edx
- arguments: $0x8(%ebp), %0xc(%ebp), %0x10(%ebp) ...

- Callee saved registers
- pushed to the stack at the start of the function
- restored before the callee exits
- %ebx, %edi, %esi
- return value in %eax

Even More Assembly

- call <label>
- pushl %eip
- movl <label (function address)> %eip

- leave
- movl %ebp, %esp
- popl %ebp

- ret
- popl %eip

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

In main():
 f();

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4%esp

main()
%ebp

main's locals

In main(), about to call f().

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f().

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f(). No arguments!

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f().
2. Call f()

%eip: 0x0800BEE0

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f().
2. Call f()

call f

%eip: 0x0800BEE0

Assume instruction after call to g(x) is at
location: 0x0800BEE4
Assume first instruction of g is at location:
0x0800F00D

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4
%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f().
2. Call f()

call f

%eip: 0x0801F00D

0x0800BEE4

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4
%esp

main()
%ebp

main's locals

In main(), about to call f().
1. Prepare arguments to f().
2. Call f()
3. f() is now "in control"

call f

%eip: 0x0801F00D

0x0800BEE4

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4
%esp

main()
%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp pushl %ebp

%eip: 0x0801F00D

0x0800BEE4

%ebp = 0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()
%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp pushl %ebp

%eip: 0x0801F00D

0x0800BEE4

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()
%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp
2. Update %ebp to point to *my*
frame base.

movl %esp %ebp

%eip: 0x0801F00D

0x0800BEE4

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp
2. Update %ebp to point to *my*
frame base.

movl %esp %ebp

%eip: 0x0801F00D

0x0800BEE4

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp
2. Update %ebp to point to *my*
frame base.
3. Allocate space for local
variables

%eip: 0x0801F00D

0x0800BEE4

0x7FFFFACE

subl $8 %esp

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() -- setup stack frame
1. Save caller's %ebp
2. Update %ebp to point to *my*
frame base.
3. Allocate space for local
variables

%eip: 0x0801F00D

0x0800BEE4

0x7FFFFACE

subl $8 %esp

f local vars

Note: Depending on how clever the
compiler is, it may not allocate

stack space for *all* local vars if it
can do it with registers.

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x);

 return foo + 5;

}
int g(int num) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g

%eip: 0x0801F010

0x0800BEE4

0x7FFFFACE

f local vars

pushl $eax

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g

%eip: 0x0801F010

0x0800BEE4

0x7FFFFACE

f local vars

pushl 1
pushl $eax

g arg1: 1

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g

%eip: 0x0801F010

0x0800BEE4

0x7FFFFACE

f local vars

pushl 1
pushl $eax

g arg1: 1

g arg0: 42

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g
2. Call g (saves %eip).

%eip: 0x0801F010

0x0800BEE4

0x7FFFFACE

f local vars

call g

g arg1: 1

g arg0: 42

Assume f's next instruction
is at 0x0801F014

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g
2. Call g (saves %eip).

%eip: 0x0801F010

0x0800BEE4

0x7FFFFACE

f local vars

call g

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

Assume f's next instruction
is at 0x0801F014

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFFABC4

%esp

main()

%ebp

main's locals

f() executes its code, and is
about to call g().
1. Prepare arguments to g
2. Call g (saves %eip).
3. g is in control now!

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

call g

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

Assume f's next instruction
is at 0x0801F014

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

pushl %ebp

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

pushl %ebp

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.
2. Update %ebp to point to *my*
frame base.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

movl %esp %ebp

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.
2. Update %ebp to point to *my*
frame base.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

movl %esp %ebp

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return num+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.
2. Update %ebp to point to *my*
frame base.
3. Allocate space for local vars.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g must setup its stack frame.
1. Save caller's %ebp.
2. Update %ebp to point to *my*
frame base.
3. Allocate space for local vars.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

No local vars!

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g() finishes, now must return.
1. Set %esp to caller's original %
esp.
2. Set %ebp to caller's original %
ebp.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

f saved ebp: 0x7FFFABDC

This is %ebp!

popl %ebp

movl %ebp %esp

0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g() finishes, now must return.
1. Set %esp to caller's original %
esp.
2. Set %ebp to caller's original %
ebp.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

popl %ebp

0x7FFFABDC

This is %ebp!

movl %ebp %esp

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g() finishes, now must return.
1. Set %esp to caller's original %
esp.
2. Set %ebp to caller's original %
ebp.
3. Return to caller.

%eip: 0x0800FEED

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42
f saved eip: 0x0801F014

0x7FFFABDC

ret

Pops top of stack,
places value into
%eip.

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

g() finishes, now must return.
1. Set %esp to caller's original %
esp.
2. Set %ebp to caller's original %
ebp.
3. Return to caller.

%eip: 0x0801F014

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42

0x7FFFABDC

ret

Pops top of stack,
places value into
%eip.

f in control now!

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

f() resumes executing.

%eip: 0x0801F014

0x0800BEE4

0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42

0x7FFFABDC

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.

%eip: 0x0801F014

main eip: 0x0800BEE4

main ebp: 0x7FFFFACE

f local vars

g arg1: 1

g arg0: 42

0x7FFFABDC

movl %ebp %esp

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.

%eip: 0x0801F014

main eip: 0x0800BEE4

main ebp: 0x7FFFFACE 0x7FFFABDC

movl %ebp %esp

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4

%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.
2. Update %ebp to caller's %ebp.

%eip: 0x0801F014

main eip: 0x0800BEE4

main ebp: 0x7FFFFACE 0x7FFFABDC

popl %ebp

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4
%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.
2. Update %ebp to caller's %ebp.

%eip: 0x0801F014

main eip: 0x0800BEE4

popl %ebp

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4
%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.
2. Update %ebp to caller's %ebp.
3. Return control to caller.

%eip: 0x0801F014

main eip: 0x0800BEE4

ret

0x7FFFFACE

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4%esp

main()

%ebp

main's locals

f() is ready to return.
1. Update %esp to caller's %esp.
2. Update %ebp to caller's %ebp.
3. Return control to caller.

%eip: 0x0800BEE4

ret

0x7FFFFACE

main() in control!

Example: Function Call
int f() {

 int x = 42;

 int foo = g(x,1);

 return foo + 5;

}
int g(int n, int a) {
 return n+10;
}

Addresses
grow down

0x7FFFABC4%esp

main()

%ebp

main's locals

main() resumes executing where
it left off, and finishes its
awesome computation.

%eip: 0x0800BEE4

0x7FFFFACE

main() in control!

.main:
 ...
 call f
 # here now
 ...

Conditional Jumps
je, jz -- jump if equal/zero
jne, jnz -- jump if not-equal/not-zero
jl, jle -- jump if less than/less-than-or-equal
jg, jge -- jump if greater than/greater-than-or-equal

Several more jump types (ie overflow, sign, parity, etc.).

cmp

Use cmpl, testl to use the conditional jump!

cmpl %eax %edx
jge .L2

Jumps to .L2 if %eax <= %edx

testl

testl %eax, %eax

jz zeroLabel; jump if %eax is zero

js negLabel ; jump if EAX is negative
jns posLabel ; jump if EAX is positive

Quick way to check if a register is 0, negative,
or positive.

Compiling at Home

Try creating assembly output yourself!
$ gcc -m32 -S -O0 -o code.s code.c

Use x86 (ie
32-bit mode) Compile to

assembly Do least
amount of
optimizations

Save
generated
assembly to:
code.s

Input C source
file. Your code
here!

Compiling at Home

Add this flag to disable weird lines with .cfi_ junk:
$ gcc -m32 -S -O0 -fno-asynchronous-unwind-tables -o code.s code.c

Compiling at Home
Full pipeline to compile .c code -> .s -> executable.

Compile: generates assembly from c code

gcc -S -m32 -O0 -fno-asynchronous-unwind-tables -o printint.s printint.c

Assemble: generates object file from assembly

gcc -c -m32 -o printint.o printint.s

Linker: generates executable from object file

gcc -m32 -o printint printint.o

Use last two commands to create executables of your
own x86 code!

Midterm
- ~9 questions
- Open book
- Covers:

- Integers: §1–§2.3, §2.5
- Assembly: §3–§3.5, §3.13
- Control: §3.6
- Procedures: §3.7
- Data structures: §3.8–§3.10
- Pointers: §3.11, §3.12, §3.15
- Lab 2 and HW3

The Bad News

- The midterm doesn’t exist yet
- You won’t find the answers in your book

- “What if” questions
- “No right answer” questions

- “Explain your reasoning”
- Multi-topic questions

- Essentially a timed take-home assignment
(minus ability to google/stackoverflow)

Tips
- Practice problems from the book, labs
- Condense your notes to save time
- Think like the professor

- Take note of tangents to the lecture material
- Why would he choose one HW problem over another?
- “Come up with more efficient calling conventions for

performing multiple precision arithmetic”
- “Count the number of transitions from 0 to 1 when

counting the bits of an integer from right to left.”
- Bring a calculator

More Practice

- Bit Manipulation:
- 2.67, 2.73, 2.75

- Reverse Engineering Assembly:
- 3.62, 3.63, 3.65, 3.66, 3.58

- Procedures x Data Structures:
- 3.64

