CS 33 (Week 4)

Section 1G, Spring 2015
Professor Eggert (TA: Eric Kim)
v1.0

Announcements

e Midterm 1 was yesterday.
o It's over! Don't stress out too much.
o We'll go over the midterm next week

e Homework 3 due Monday

e Lab 2 is out!

o Due on Thursday (soon!)
o Start early

This Week

Matrices in x86

Structs

Unions

Alignment

Pointers

Bounds Checking/Exploits

Matrices in x86 (nested arrays)

e int A[2][3] 1 2 |3
o A matrix with 2 rows, 3 columns 4 5 6

e C style: Row-Major order

o Row-Major: In memory, matrix is laid out row-by-row
o Column-Major: Matrix is laid out column-by-column

[123456] [142536]

A in Row-Major format A in Column-Major format
(this is what C does!)

Matrix: Row-Major

e How to access elementat int A[1][7j]7
o Recall: A is a 2x3 matrix.

e |n C, using pointer arithmetic:

int val = *(A + 3*1 + j)

Matrix: Row-Major

e How to access elementat int A[1][7j]7
o Recall: A is a 2x3 matrix.

e In x86 (%eax = &A, %ebx = i, %ecx = j)

leal (%ebx,%ebx,2), %ebx # 3*i

imull $4, %ebx # 4*3*1 (int is 4 bytes)
addl %ebx, %eax # A + 4*%3*1

leal (%eax, %ecx, 4) %eax # A + 4*3*1 + 4%

movl (%eax) %eax

Challenge: Do the same, but in fewer instructions!

Recall: C Pointers

e Why does x86 multiply by 4, but C code does not?

o C pointers remember data type, ie how large each
element is!

int *p;
*(p+1); // This goes 4 bytes forward! CLEVER GIRL

e To x806, bytes are bytes. Compiler must keep
track of data sizes.

Practice Problem 3.37

Consider the following source code, where M and N are constants declared with
#define:

1 int mat1[M] [N];
2 int mat2([N] [M);

4 int sum_element(int i, int j) {
5 return mati1[i] [j] + mat2(j] [i];
6)

In compiling this program, Gce generates the following assembly code:

i at %ebp+8, j at %ebp+12
movl 8(%ebp), %ecx
movl 12 (%ebp), %edx
leal 0(,%ecx,8), Y%eax

N -

3

4 subl Y%hecx, %heax

5 addl Y%hedx, %eax

6 leal (%edx,%edx,4), %edx
7 addl Y%hecx, %hedx

8 movl matl(,%eax,4), %eax
9 addl mat2(,%edx,4), %eax

Use your reverse engineering skills to determine the values of M and N based on
this assembly code.

Solution to Problem 3.37 (page 236)

This problem requires you to work through the scaling operations to determine
the address computations, and to apply Equation 3.1 for row-major indexing. The
first step is to annotate the assembly code to determine how the address references
are computed:

1 movl 8 (%ebp) , %ecx Get i

2 movl 12(%ebp), %edx Get j

3 leal 0(,%ecx,8), %eax 8xi

4 subl hecx, %eax 8xi-i = 7%i
5 addl hedx, %eax 71+

6 leal (%edx,%edx,4), %edx 5%

7 addl hecx, hedx 5%j+i

8 movl matl(,%eax,4), %eax matl[7*i+j]
9 add1l mat2(,%edx,4), %eax mat2[5%j+i]

We can see that the reference to matrix mat1 is at byte offset 4(7i + j), while the
reference to matrix mat2 is at byte offset 4(5j + i). From this, we can determine
that mat1 has 7 columns, while mat2 has 5, giving M =5and N =7.

Structs

e How are structs laid out in memory?
e |In x86, how to access struct fields?

struct student record {

int uid; // 000000404
char initials[2]; // EK
double gpa; // ©.42 (Ouch)

char is_graduated; // ©: No 1: Yes

Structs

e Fields are placed in memory contiguously

o Always contiguous! C is not allowed to reorder struct
fields.

struct student record {
int uid;

char initials[2]; int uid char[2] | double gpa char

double gpa;
char is_gr‘aduated; 4 bytes 2 bytes 8 bytes 1 byte

We'll talk about struct alignment in a bit

Unions

e Hacky way to save space in structs (IMO)

union node { Suppose node represents a binary
tree, with the following structure:
struct ’
{ - If the node is a leaf node, then it

° * °
union node* left; stores a numerical data.

union node* right; - Otherwise, it stores two pointers to
} internal; its left/right children.
double data;
} Note: A node can't have both data

and pointers to children! In other
words, only leaf nodes store data.

Unions

e Two equivalent-ish ways

union node { struct node {
struct { struct {
union node* left; struct node* left;
union node* right; struct node* right;
} internal; } internal;
double data; double data;
} }

Difference: union node uses 8 bytes, but struct node uses 16
bvteg!

Unions

e Warning: Consider the following code.

union node my node = get some node();

Is my node an internal node? Or is it a leaf node?

We don't know!

Need to use context to find out which "flavor"
of node my node is.

Unions

e Warning: Consider the following code.

union node my node = get some node();
printf("Value: %f\n", my_node.data);

Here, my node turns out to be the leaf-node
variant of union node.

Unions

e Warning: Consider the following code.

union node my node = get some node();
print_tree(my_node.internal.left);

Here, my_ node turns out to be the internal-node
variant of union node.

Unions

e Tip: When reverse engineering x86 code for
union code, you'll need to figure out the
correct union "flavor" of each variable.
(HW3)

o In HW3, pointer dereferences help disambiguate
things.

Review: Little-endian vs Big-endian

long long bit2ll(unsigned int word®, unsigned int wordl) {
union {

i‘;gfgigggu?i]. unsigned int x = Ox@ABCDEF®
} temp; ’ unsigned int y = OxFACEBOOF
temp.u[@] = wordo; long long val = bit2l1(x,y);
temp.u[1l] = wordl;
return temp.d; What is val if

(1) The machine is little-endian?

(2) The machine is big-endian?

For both cases, how is val laid out In
memory?

Review: Little-endian vs Big-endian

long long bit2ll(unsigned int word®, unsigned int wordl) {
union {

iﬁ:? igggu?i], unsigned int x = @x@ABCDEF®
} temp?’ ’ unsigned int y = OxFACEBOOF
temp.u[@] = worde; long long val = bit2ll(x,y);
temp.u[1l] = wordl;
return temp.d; Answer:
! Little-endian: O©xFACEBOOF OABCDEF©

Big-endian: 6x0ABCDEF© FACEBOOF

Review: Little-endian vs Big-endian

long long bit2ll(unsigned int word®, unsigned int wordl) {
union {

i‘;;‘? igggu?i]. unsigned int x = Ox@ABCDEF®
\ temp, ’ unsigned int y = @xFACEB@OF
temp.u[@] = wordo; long long val = bit2l1(x,y);

temp.u[1l] = wordl;

———————» Addresses grow left->right
return temp.d;

¥

Little-endian: OxfO | Oxde | Oxbc | OxOa | OxOf | OxbO | Oxce | Oxfa

How is val laid
out in memory? Big-endian: Ox0a | Oxbc | Oxde OxfO | Oxfa | Oxce | OxbO | OxOf

Alignment

e Xx86 convention: total stack space used by a function
must be a multiple of 16 bytes
e Arch-dependent rules on data-alignment

o Linux: 2-byte data types (ie short) must have an addr
that is a multiple of 2.

m Larger data types (ie int, double) must have an
addr that is a multiple of 4

o Windows: ANY data type of K bytes must have an

addr that is a multiple of K.
o Which is faster?

x86: .align directive

.align N tells compiler to make subsequent data
have an addr that is a multiple of N.

.rodata .rodata
.string "ab\e" # starts at addr © .string "ab\@" # starts at addr ©
.string "hi" # starts at addr 3 .align 4

.string "hi" # starts at addr 4

.rodata

.string "a" # starts at addr ©
.align 4

.string "hi" # starts at addr 4

Struct alignment

e Might need to add padding in between fields
to satisfy alignment

e For struct arrays, might need to add padding
at *end” of each struct to satisfy alignment

e See Chapter 3.9.3 for more details

C Pointers

e One warning: casting priority
o Suppose p is a pointer to a char

What is the memory offset of the following expressions?

int* +7 4*7 = 28 bytes (p is first cast as int*, then
P
incremented)

(int*) (p+7) IZtlt?)ytes (p is still treated as a char

C Function Pointers

int (*f)(int,char)
Means: f is a pointer to a function that takes
two arguments (int, char), and returns an int.

int (*f)(int, char) = &my_ fn;

int add_two(x) {
return x + 2;
What gets }

printed out? int add_three(x) {
return x + 3;
}
int compose(int val, int (*f)(int), int(*g)(int)) {
return f(g(val));

}
47 int main(int argc, char** argv) {
int (*fnptr1)(int) = &add_two;
int (*fnptr2)(int) = &add_three;

int s = compose(42, fnptri,fnptr2);
printf("s is: %d\n", s);
return 1;

Warning: Function Ptr vs Prototype

(int*) f(char*,int)

This is a function prototype, declaring a
function f that takes 2 args (char*,int), and
returns an int*.

int* (*f)(char*,int)

fis a pointer to a function that takes two
args (char*,int), and returns an int*.

gdb - Debugger

For Lab 2, you may find these lines useful:

$ gdb --args emacs -batch -eval '(print (* 37
-26))"

(gdb) set disassemble-next-line on
(gdb) break main

(gdb) run

(gdb) stepi

(gdb) info registers

gdb - Debugger

Also:
(gdb) disassemble \m main

Bounds Checking

Scenario: A function declares a local char
buffer with a fixed size, and allows user to
iInput characters from the keyboard into the
buffer.

BUT! The function doesn't check to see if the
user typed past the end of the buffer.

Bounds Checking

"Best" case: Program crashes
What scenario could result in a crash?

Worst case: Attacker gains control of your
machine!

Bounds Checking

/* Sample implementation of library function gets() */

1

2 char *gets(char *s)

300 Ao

4 int c;

5 char *dest = s;

6 int gotchar = 0; /* Has at least one character been read? */
7 while ((c = getchar()) !'= '\n' && c != EOF) {
8 *dest++ = c; /* No bounds checking! */

9 gotchar = 1;

10 +

11 xdest++ = '\0'; /* Terminate string */

12 if (c == EOF && !gotchar)

13 return NULL; /* End of file or error */
14 return s;

15}

16

Stack Smashing

When a function writes past the end of a buffer
(ie array), this is called a buffer overflow.

In the Computer Security community, this is
also known as Stack Smashing, especially
when a buffer overflow is used for malicious

puUrposes.

Stack Smashing (Reading)

If you're curious, Google "Stack Smashing for
Fun and Profit"

Purely optional, ie if you're bored and somehow
have free time P

Stack Smashing

How to exploit a buffer overflow?

Recall: Goals of attacker are typically:
1. Read sensitive data (passwords, etc)
2. Disrupt service (ie DDoS)
3. Execute code on machine

Stack Smashing

Trick 1: Overwrite caller's saved eip on stack,
and write the address of code that *we* want to
execute!

Super Neat Trick: Write our malicious code
iInto the array we are overflowing, then set
caller's saved eip to start of our code!

Stack Smash Defenses

e Only allow OS to execute code from read-

only section of memory
o Called "Data Execution Prevention" (DEP)
o Known workarounds

m store code on heap

m Call syscalls to disable DEP

m make a series of legit function/library calls to
achieve hack ("return-to-libc")

Address Space Layout Randomization (ASLR)

e Several exploits require knowing the precise
address of locations on the stack (ie the
address of the caller's saved eip).

e Defense: randomize the stack
o Start stack at some random offset

o Defeats attacks that assume a specific memory
layout

NOP-Sleds

e Scenario: we are injecting malicious code
iInto a buffer.

o Goal: Need to put the address of the first malicious
iInstruction into the caller's saved eip

o With ASLR, this is much more difficult. We could do
a brute-force search, but search space is large.

Ox08 0Ox02 Oxf3 Oxff Ox33 | Ox74 0Ox1ll Ox00

Start of my malicious code. How to guess this address?

NOP-Sleds

e \Workaround:

Ox08 0Ox02 Oxf3 Oxff o0x33 | Ox74 0x1l1l Ox00

Instead of having to guess this address
(hard)

NOP-Sleds

"Payload" Code
e \WNorkaround: |

|

OXx90 | Ox90 | Ox90 0Ox90 0Ox90 O0x90 0Ox90 0x90 0x08 |x02 oxf3 oxff

| | ;T

Instead, guess *any” of these addresses!

If we hit any of the NO-OP instructions, then the processor will
"slide" from left to right until it reaches our malicious code.

Canaries

e |dea: Instead of trying to stop buffer

overflows, instead try to detect them.
o If detect, then halt the program.

Canaries

e Compiler adds special value (canary) to
stack at the end of a local buffer.
e \When function is returning, check canary

value.

o If the canary value changed, then a buffer overflow

must have happened.
m [ssue a "Stack Overflow Exception”

o Else, return to caller as normal

Canaries

e By halting before returning, we prevent the
eip being set to an address of the attacker's
choosing.

e Can you think of ways to bypass a canary?

o Assume that it isn't feasible to try to guess the
canary value.

Computer Security

e Studying ways to attack vulnerable systems

(and defend against malicious attackers)

o Web security is *hugely* important these days
m Banks, customer data, SSN's, etc.

e Very active field of research
o Web security, mobile security, network security, ...

Computer Security (cont.)

° Cryptography
o Using math to design robust, secure cryptosystems
o le "one-way" functions: functions that are simple to

evaluate in one direction, but computationally
infeasible to invert.

o |Involves a crazy amount of number theory
m le properties of prime numbers

Computer Security (cont.)

e If this stuff excites you, consider taking a few

courses in security
o CS 136: Introduction to Computer Security

Looking Forward...

Today: 4/24

_ab 2: Due 4/30
HW 4: Due 5/08
_ab 3: Due 5/13
Midterm 2: 5/14 <« ~3 weeks from now

Tips
e Study/prepare early

e [ake advantage of resources
o Prof/TA office hours, Piazza, UPE/ACM tutoring

o Can even e-mail me/other TA's to go over things if
office hours isn't enough (depending on our
schedules, we can help)

e Read textbook! *Very* helpful.
o We follow the textbook pretty closely
o Doing the practice exercises helps consolidate things

e You can do it!

