
CS 33 (Week 4)
Section 1G, Spring 2015

Professor Eggert (TA: Eric Kim)
v1.0

Announcements

● Midterm 1 was yesterday.
○ It's over! Don't stress out too much.
○ We'll go over the midterm next week

● Homework 3 due Monday
● Lab 2 is out!

○ Due on Thursday (soon!)
○ Start early

This Week

● Matrices in x86
● Structs
● Unions
● Alignment
● Pointers
● Bounds Checking/Exploits

Matrices in x86 (nested arrays)

● int A[2][3]
○ A matrix with 2 rows, 3 columns

● C style: Row-Major order
○ Row-Major: In memory, matrix is laid out row-by-row
○ Column-Major: Matrix is laid out column-by-column

1 2 3

4 5 6

[1 2 3 4 5 6]
A in Row-Major format
(this is what C does!)

[1 4 2 5 3 6]
A in Column-Major format

Matrix: Row-Major
● How to access element at int A[i][j]?

○ Recall: A is a 2x3 matrix.
● In C, using pointer arithmetic:

int val = *(A + 3*i + j)

Matrix: Row-Major
● How to access element at int A[i][j]?

○ Recall: A is a 2x3 matrix.
● In x86 (%eax = &A, %ebx = i, %ecx = j)

leal (%ebx,%ebx,2), %ebx # 3*i

imull $4, %ebx # 4*3*i (int is 4 bytes)

addl %ebx, %eax # A + 4*3*i

leal (%eax, %ecx, 4) %eax # A + 4*3*i + 4*j

movl (%eax) %eax

Challenge: Do the same, but in fewer instructions!

Recall: C Pointers
● Why does x86 multiply by 4, but C code does not?

○ C pointers remember data type, ie how large each
element is!

int *p;

*(p+1); // This goes 4 bytes forward!

● To x86, bytes are bytes. Compiler must keep
track of data sizes.

Structs

● How are structs laid out in memory?
● In x86, how to access struct fields?

struct student_record {
 int uid; // 000000404
 char initials[2]; // EK
 double gpa; // 0.42 (Ouch)
 char is_graduated; // 0: No 1: Yes
}

Structs

● Fields are placed in memory contiguously
○ Always contiguous! C is not allowed to reorder struct

fields.
struct student_record {
 int uid;
 char initials[2];
 double gpa;
 char is_graduated;
}

int uid char[2] double gpa char

4 bytes 2 bytes 8 bytes 1 byte

We'll talk about struct alignment in a bit

Unions

● Hacky way to save space in structs (IMO)

union node {
 struct {
 union node* left;
 union node* right;
 } internal;
 double data;
}

Suppose node represents a binary
tree, with the following structure:
- If the node is a leaf node, then it
stores a numerical data.
- Otherwise, it stores two pointers to
its left/right children.

Note: A node can't have both data
and pointers to children! In other
words, only leaf nodes store data.

Unions

● Two equivalent-ish ways
union node {
 struct {
 union node* left;
 union node* right;
 } internal;
 double data;
}

struct node {
 struct {
 struct node* left;
 struct node* right;
 } internal;
 double data;
}

Difference: union node uses 8 bytes, but struct node uses 16
bytes!

Unions

● Warning: Consider the following code.

union node my_node = get_some_node();

Is my_node an internal node? Or is it a leaf node?

We don't know!

Need to use context to find out which "flavor"
of node my_node is.

Unions

● Warning: Consider the following code.

union node my_node = get_some_node();
printf("Value: %f\n", my_node.data);

Here, my_node turns out to be the leaf-node
variant of union node.

Unions

● Warning: Consider the following code.

union node my_node = get_some_node();
print_tree(my_node.internal.left);

Here, my_node turns out to be the internal-node
variant of union node.

Unions

● Tip: When reverse engineering x86 code for
union code, you'll need to figure out the
correct union "flavor" of each variable.
(HW3)
○ In HW3, pointer dereferences help disambiguate

things.

Review: Little-endian vs Big-endian

unsigned int x = 0x0ABCDEF0
unsigned int y = 0xFACEB00F
long long val = bit2ll(x,y);

What is val if:
(1) The machine is little-endian?
(2) The machine is big-endian?
For both cases, how is val laid out in
memory?

long long bit2ll(unsigned int word0, unsigned int word1) {
 union {
 long long d;
 unsigned u[2];
 } temp;
 temp.u[0] = word0;
 temp.u[1] = word1;
 return temp.d;
}

Review: Little-endian vs Big-endian

unsigned int x = 0x0ABCDEF0
unsigned int y = 0xFACEB00F
long long val = bit2ll(x,y);

Answer:
Little-endian: 0xFACEB00F 0ABCDEF0
Big-endian: 0x0ABCDEF0 FACEB00F

long long bit2ll(unsigned int word0, unsigned int word1) {
 union {
 long long d;
 unsigned u[2];
 } temp;
 temp.u[0] = word0;
 temp.u[1] = word1;
 return temp.d;
}

Review: Little-endian vs Big-endian

unsigned int x = 0x0ABCDEF0
unsigned int y = 0xFACEB00F
long long val = bit2ll(x,y);

long long bit2ll(unsigned int word0, unsigned int word1) {
 union {
 long long d;
 unsigned u[2];
 } temp;
 temp.u[0] = word0;
 temp.u[1] = word1;
 return temp.d;
}

0xf0 0xde 0xbc 0x0a 0x0f 0xb0 0xce 0xfa

How is val laid
out in memory? 0x0a 0xbc 0xde 0xf0 0xfa 0xce 0xb0 0x0f

Little-endian:

Big-endian:

Addresses grow left->right

Alignment
● x86 convention: total stack space used by a function

must be a multiple of 16 bytes
● Arch-dependent rules on data-alignment

○ Linux: 2-byte data types (ie short) must have an addr
that is a multiple of 2.
■ Larger data types (ie int, double) must have an

addr that is a multiple of 4
○ Windows: ANY data type of K bytes must have an

addr that is a multiple of K.
○ Which is faster?

x86: .align directive

.align N tells compiler to make subsequent data
have an addr that is a multiple of N.

.rodata

.string "ab\0" # starts at addr 0

.string "hi" # starts at addr 3

.rodata

.string "ab\0" # starts at addr 0

.align 4

.string "hi" # starts at addr 4

.rodata

.string "a" # starts at addr 0

.align 4

.string "hi" # starts at addr 4

Struct alignment

● Might need to add padding in between fields
to satisfy alignment

● For struct arrays, might need to add padding
at *end* of each struct to satisfy alignment

● See Chapter 3.9.3 for more details

C Pointers

● One warning: casting priority
○ Suppose p is a pointer to a char

What is the memory offset of the following expressions?

(int*) p+7

(int*) (p+7)

4*7 = 28 bytes (p is first cast as int*, then
incremented)

7 bytes (p is still treated as a char*
ptr)

C Function Pointers

int (*f)(int,char)

Means: f is a pointer to a function that takes
two arguments (int, char), and returns an int.

int (*f)(int, char) = &my_fn;

What gets
printed out?

47

Warning: Function Ptr vs Prototype

(int*) f(char*,int)

int* (*f)(char*,int)

This is a function prototype, declaring a
function f that takes 2 args (char*,int), and
returns an int*.

f is a pointer to a function that takes two
args (char*,int), and returns an int*.

gdb - Debugger
For Lab 2, you may find these lines useful:
$ gdb --args emacs -batch -eval '(print (* 37
-26))'

(gdb) set disassemble-next-line on

(gdb) break main

(gdb) run

(gdb) stepi

(gdb) info registers

gdb - Debugger
Also:
(gdb) disassemble \m main

Bounds Checking

Scenario: A function declares a local char
buffer with a fixed size, and allows user to
input characters from the keyboard into the
buffer.
BUT! The function doesn't check to see if the
user typed past the end of the buffer.

Bounds Checking

"Best" case: Program crashes
What scenario could result in a crash?

Worst case: Attacker gains control of your
machine!

Bounds Checking

Stack Smashing

When a function writes past the end of a buffer
(ie array), this is called a buffer overflow.
In the Computer Security community, this is
also known as Stack Smashing, especially
when a buffer overflow is used for malicious
purposes.

Stack Smashing (Reading)

If you're curious, Google "Stack Smashing for
Fun and Profit"

Purely optional, ie if you're bored and somehow
have free time :P

Stack Smashing

How to exploit a buffer overflow?
Recall: Goals of attacker are typically:
 1. Read sensitive data (passwords, etc)
 2. Disrupt service (ie DDoS)
 3. Execute code on machine

Stack Smashing

Trick 1: Overwrite caller's saved eip on stack,
and write the address of code that *we* want to
execute!

Super Neat Trick: Write our malicious code
into the array we are overflowing, then set
caller's saved eip to start of our code!

Stack Smash Defenses

● Only allow OS to execute code from read-
only section of memory
○ Called "Data Execution Prevention" (DEP)
○ Known workarounds

■ store code on heap
■ Call syscalls to disable DEP
■ make a series of legit function/library calls to

achieve hack ("return-to-libc")

Address Space Layout Randomization (ASLR)

● Several exploits require knowing the precise
address of locations on the stack (ie the
address of the caller's saved eip).

● Defense: randomize the stack
○ Start stack at some random offset
○ Defeats attacks that assume a specific memory

layout

NOP-Sleds
● Scenario: we are injecting malicious code

into a buffer.
○ Goal: Need to put the address of the first malicious

instruction into the caller's saved eip
○ With ASLR, this is much more difficult. We could do

a brute-force search, but search space is large.
... ... 0x08 0x02 0xf3 0xff 0x33 0x74 0x11 0x00

Start of my malicious code. How to guess this address?

NOP-Sleds

● Workaround:

... ... 0x08 0x02 0xf3 0xff 0x33 0x74 0x11 0x00

Instead of having to guess this address
(hard)

NOP-Sleds

● Workaround:

0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x08 0x02 0xf3 0xff

Instead, guess *any* of these addresses!

If we hit any of the NO-OP instructions, then the processor will
"slide" from left to right until it reaches our malicious code.

"Payload" Code

Canaries

● Idea: Instead of trying to stop buffer
overflows, instead try to detect them.
○ If detect, then halt the program.

Canaries

● Compiler adds special value (canary) to
stack at the end of a local buffer.

● When function is returning, check canary
value.
○ If the canary value changed, then a buffer overflow

must have happened.
■ Issue a "Stack Overflow Exception"

○ Else, return to caller as normal

Canaries

● By halting before returning, we prevent the
eip being set to an address of the attacker's
choosing.

● Can you think of ways to bypass a canary?
○ Assume that it isn't feasible to try to guess the

canary value.

Computer Security

● Studying ways to attack vulnerable systems
(and defend against malicious attackers)
○ Web security is *hugely* important these days

■ Banks, customer data, SSN's, etc.
● Very active field of research

○ Web security, mobile security, network security, ...

Computer Security (cont.)

● Cryptography
○ Using math to design robust, secure cryptosystems
○ Ie "one-way" functions: functions that are simple to

evaluate in one direction, but computationally
infeasible to invert.

○ Involves a crazy amount of number theory
■ Ie properties of prime numbers

Computer Security (cont.)

● If this stuff excites you, consider taking a few
courses in security
○ CS 136: Introduction to Computer Security

Looking Forward...

Today: 4/24

Lab 2: Due 4/30
HW 4: Due 5/08
Lab 3: Due 5/13
Midterm 2: 5/14 ← ~3 weeks from now

Tips
● Study/prepare early
● Take advantage of resources

○ Prof/TA office hours, Piazza, UPE/ACM tutoring
○ Can even e-mail me/other TA's to go over things if

office hours isn't enough (depending on our
schedules, we can help)

● Read textbook! *Very* helpful.
○ We follow the textbook pretty closely
○ Doing the practice exercises helps consolidate things

● You can do it!

