CS 33 Week 5

Section 1G, Spring 2015
Professor Eggert (TA: Eric Kim)
v1.0

Announcements

e Lab 2 due yesterday (4/30)
e HW 4 out! (Due: 5/8)
e Lab 3 out! (Due: 5/13)

o Stack smashing!
m "Smashing" Lab

(couldn't help myself)

SMASHING

MT 1 Grades Up

e Midterm 1 grades are up

o Mean: 43 Median: 42 Std: 13
m 242 students

e Pretty good bell curve
e Check that points add up correctly

o Verify with my.ucla.edu

This Week

o MT 1
e Floating Point
e Program Optimizations/Performance

Floating Point

e So far, have worked with integer data types

o signed: two's complement
o unsigned

e Integers: 0, 1,42, -101, 9001

How to represent a non-integer, like 0.5?

Answer: Floating Point Representation!

Floating Point (IEEE 754)

e (Goal: Represent rational numbers with a

fixed number of bits
o float: 32 bits "single" precision
o double: 64 bits "double" precision

Floating Point

Single precision
31 30 23 22

: Bits of Me (Single)

S exp

frac

Sign "Exponent”
bit Field

1 bit 8 bits

"Fraction" Field

23 bits

Two Types of FP

e There are two different "types” of a floating
point number
e Case 1: "Normalized"

o Common case. Represent large and moderately-
small values.

e Case 2: "Denormalized”
o Represent very small values (close to 0).

Case 1: Normalized

1. Normalized
S #0 & #255 f

\ J
|

Expisnotall O'sorall 1's

V=(-1)°%x M x 2"

S = sign bit _
M=1+f _ - 127 for single
_ : Bms=2k 1—-1 =
E =e - Bias
k is # bits in exp i 1023 for double

. k—1 127 for single
Bias = 2 —1 = J
1023 for double

Case 1: Normalized

K is # bits in exp
Single precision
3130 23 22 0

S exp frac

0100 0010 0010 1000 VOO VVYY VBB 0L

exp =10000100=0x84 =8"16 +4 = 132
What is V? f=010 1000 0000 0000 0000 0000
= 0*27(-1) + 1*27(-2) + 0*27\(-3) + 1*2/(-4) = 0.3125
o V = (-1)"0 * (1 + 0.3125) * 21132 - 127) = 42.0
S = sign bit
E B V=(=1)°%x Mx2"

E =e - Bias

Case 2: Denormalized

2. Denormalized

s{0|0[0]|0(0]|0|0]|O f
\ J

|
Expis allO's orall 1's

V=(-1)°%x M x 2"

S = sign bit _
M=f _ k_]_ 127 for single
E =1 - Bias Bias = 2% * —1 = -

k is # bits in exp i 1023 for double

d Bias = 2]{?—1 1 - ‘|: 127 for single

1023 for double

Case 2: Denormalize o
K is # bits in exp

1000 0000 0010 1100 00O 0O 0O 00O

exp = 000 0000 0 = 0
_ f=010 1100 0000 0000 0000 0000
What is V? = 1%24(22) + 1%2A(-4) + 1*27(-5) = 0.34375
V = (-1)M * (0.34375) * 2/(1-127)
= -4.040761830951613e-39

S = sign bit

E:I-Bias V — (—]_)S X M X 2E

Case 3: Special Values

e Represent infinity, NaN via certain bit

patterns
3a. Infinity

sf1|1(1(1/1{1,1{1]0({0|0(0|0|0|0|0|0|0O|0O|O[O|OfO|O|O

s{1{1f{1|1|1)1|1|1 #0

Note: +Inf and -Inf are different (sign bit).

Case 3: Special Values

e Can represent 0.0 in two ways!

o All bits 0, and sign bitis 1: -0.0
o All bits 0, and sign bit is 0: +0.0

e -0.0 and +0.0 are *usually” the same

But: 1.f / 0.f -> +Inf
1.+ / -0.f -> -Inf

Example: Largest/Smallest

e Suppose we use an 8-bit floating-point format. There
are 4 exponent bits, and 3 fraction bits.

What is the bias? 27(4-1)-1 = 7
What is the smallest/largest Smallest: © 0000 001
positive value? Largest: 0 1110 111

111
How to represent 1.07? 9 o111 0o

Rounding

e Floating point still can't represent every

rational number exactly
o Why? Finite number of bits (32, 64)

e |EEE standard defines several rounding
modes

Four Rounding Modes

Mode $1.40 $1.60 $1.50 $2.50 $—1.50
Round-to-even $1 $2 $2 $2 $—2
Round-toward-zero $1 $1 $1 $2 $—1
Round-down $1 $1 $1 $2 $—2
Round-up $2 $2 $2 $3 $—1

Figure 2.36 lllustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

FP Operations

e After every operation on two floating point

values, a round is performed.
o Ex: (f+g) => round(f+g)

FP: Addition

e Addition commutes correctly
o (f+g) = (g+f)
e Addition is generally *not* associative

o (3.14 + leld)-1el0 = 0.0
o 3.14 + (lelo-1el0) = 3.14

FP: Multiplication

e Generally not associative
o (le20*1e20)*1le-20 = +Inf
o 1e20*(1le20*1e-20) = 1e20
e Does not distribute over addition
o 1e20*(1e20 - 1e20) = ©
o le20*1e20 - 1e20*1e20 = NaN

Exercise

Practice Problem 2.53

Fill in the following macro definitions to generate the double-precision values +o0,
—o00, and 0:

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO

You cannot use any include files (such as math.h), but you can make use of the
fact that the largest finite number that can be represented with double precision
is around 1.8 x 10°%,

Exercise

We assume that the value 1e400 overflows to infinity.

#define POS_INFINITY 1e400
#define NEG_INFINITY (-POS_INFINITY)
#define NEG_ZERO (-1.0/POS_INFINITY)

C FP: Casting Rules

e In C, exists float and double data types

o Can cast to/from float types to integer types.
o Can lose information due to rounding/truncation!

#include <stdio.h>

int main() { $ gcc -0 code code.c
float v = 42.675; $./code
int foo = (int) v; foo is: 42
printf("foo is: %d\n", foo);
return 0;

Casting Rules Quiz

Exact conversion? Can overflow/underflow?
int -> float
int -> double
float -> double
double -> float
double -> int

float -> int

Casting Rules Quiz

int -> float

int -> double
float -> double
double -> float

double -> int

float -> int

Exact conversion?

No! Float can't repr very
large ints.

Yes
Yes
No

No: rounded toward zero
(1.99 -> 1, -1.99 -> 1)

No: rounded toward zero

Can overflow?

No

No
No
Yes

Yes

Yes

Example: int vs float
Can you find an int that can't be repr by a float?

Can you find an int that can't be repr by a
double?

Midterm 1: Post mortem

9 Questions Total

In my opinion, by difficulty:
Easy/Medium: 1, 3,6, 8, 9
Medium-Hard: 2, 4, 7
Tricky: 5

MT1: Q1 (leal)

1 (12 minutes). Which integer constants can a
single x86 leal instruction multiply an

arbitrary integer N by? The idea is that one
puts N into a register, executes the leal
instruction, and the bottom 32 bits of N*K will
be put into some other register, where K is a
constant. For which values of K can this be
done? For each such value, show an leal
iInstruction that implement that value.

MT1: Q1 (leal)

=>{1,2,3,4,5, 8, 9}
7 possibilities

MT1: Q2 (byte reversal)

2 (12 minutes). On the x86-64, what's the

fastest way to reverse each 8-bit byte in a

64-bit unsigned integer? For example, given the
input integer 0x0123456789abcdef, we want to
compute 0x80c4a2e691d5b3f7; this is because 0x01
is binary 00000001 and reversing it yields binary
10000000 which is 0x80, and similarly the
bit-reverse of 0x23 is 0xc4, and so forth until

the bit-reverse of Oxef is Oxf7. Write the code

in C, and estimate how many machine instructions
will be generated (justify your estimate).

MT1: Q2 (byte reversal)

long long reverseBits(long long x) {
unsigned long long ml = OxXFOFOFOFOFOFOFOFO;
unsigned long long ml 2 = OxXOFOFOFOFOFOFOFOF;
unsigned long long m2 = @xCCCCCCCCCCCCCCCC;
unsigned long long m2 2 = ©x3333333333333333;
unsigned long long m3 = OxXAAAAAAAAAAAAAAAA;
unsigned long long m3_2 = ©x5555555555555555;
unsigned long long 1 = x;
1 = ((1&m1) >> 4) | ((1l&m1_2) << 4);
1 = ((1&m2) >> 2) | ((1l&m2_2) << 2);
1 = ((1&m3) >> 1) | ((1&m3_2) << 1);

This requires 6 AND's, 6 shifts, and 3 OR's for a total of 15 instructions.

MT1: Q2 (byte reversal)

long long reverseBits(long long x) {
unsigned long long ml = OxXFOFOFOFOFOFOFOFO;
unsigned long long m2 = @xCCCCCCCCCCCCCCCC,
unsigned long long m3 = OXAAAAAAAAAAAAAAAA;
unsigned long long 1 = Xx;

1 = (1&m1)>>4 | (1<<4)&ml; Alternate solution
1 = (1&m2)>>2 | (1<<2)&m2;

1 = (1&m3)>>1 | (1<<1)&m3;

return 1;

MT1: Q3 (get eip)

3 (12 minutes). On the x86, there is no 'pushl
%eip' instruction. Suppose you want to push the
Instruction pointer onto the stack anyway.

What's the best way to do it? If your method
takes three instructions A, B, C, the value

pushed onto the stack should be the address of D,
the next instruction after C.

MT1: Q3 (get eip)

call foo
foo:
... // here, top of stack 1s eip

MT1: Q4 (gdb + fin)

4 (12 minutes). Explain two different methods

that GDB can implement its 'fin' command (which
finishes execution of the current function), one
method with hardware breakpoints and one without.
For each method, say what happens if the current
function calls another function via tail

recursion.

MT1: Q4 (gdb + fin)

|dea: Set a breakpoint at the saved return address
addr

Hardware (x86): Move addr into one of the debug
registers DRO - DR3. When the processor does the
return, and is about to execute addr, hardware will
throw a debug exception.

MT1: Q4 (gdb + fin)

Software: Modify gdb to replace the instruction
at the saved return address with an INT3
(debug interrupt instruction).

If the user wishes to continue executing after
the INT3 breakpoint is triggered, gdb can
"restore"” the overwritten instruction.

MT1: Q4 (gdb + fin)

For both methods: tail-recursion will still work,
since we are putting a breakpoint at the caller-
saved return address.

int f (int *p, long *q) {

}

int g (int *p, char *q) {

}

MT1: Q5 (compiler bug)

Consider the following C functions and their translations to x86 code.

++7p;
++7q;

return *p;

++7p;
++*q;

return *p;

f:

movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addl $1, %eax

movl %eax, (%ecx)
addl $1, (%edx)

ret

movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addb $1, (%edx)
addl $1, %eax

movl %eax, (%ecx)
ret

There's a compiler bug: one of these functions is
translated incorrectly, and the other one is OK.
|dentify the bug, and explain why the other
function is translated correctly even though one
might naively think that its translation has a
similar bug.

MT1: Q5 (compiler bug)

Key: Pointer aliasing bug.

Aliasing in g is the bug. In g, g can point to a byte within the
int of p. Thus, ++*p can affect the value of *q. However, g's
assembly code adds 1 to q before adding 1 to p. To correct
this, the instructions should add 1 to %eax first, then movl
%eax, (%ecx), then addb $1, (%edx), then movl (%ecx), %
eax. f is correct because integer and long are stored in
different memory address so that order doesn’t matter.

MT1: Q5 (compiler bug)

Consider the following C functions and their translations to x86 code.

int f (int *p, long *q) { f: movl 4(2/068[)), z/oecx There's a compiler bug: one of these functions is
+44D; movl 80(/oesp)(,) YoedX translated incorrectly, and the other one is OK.
; movl (Aeé:x), /o€axX Identify the bug, and explain why the other
++7q; add| §1’ /095:))(function is translated correctly even though one
return *o- movl %eax, (Yoecx) might naively think that its translation has a
eturn °p; addl $1, (%edx) similar bug.
} ret
intg (int *p, char *q) { g movl 4(%esp), %ecx + movl 4(%esp), Yoecx
| 8(% %ed movl 8(%esp), Y%edx
++*p; movl 8(7eesp), 7oedx movl (%ecx), %eax
movl (%ecx), %eax ddl $1. % ’
++7q; addb $1, (%edx) a , /o€ax

movl %eax, (%ecx)
addb $1, (%edx)
ret

. addl $1, %eax
return *p; movl %eax, (%ecx)
} ret

MT1: Q6 (stack limits)

6 (12 minutes). Suppose we have allocated memory
locations 0xffff0000 through Oxffffffff for the

stack, and we are worried that our x86 program
might overflow the stack. We decide to institute

the ironclad rule that if a function ever

attempts to grow the stack past the allocated
bounds, the function immediately stops what it's
doing and returns 0, thus shrinking the stack.

Explain the problems you see in implementing this
rule. Don't worry about the effects of this rule

on the user program; worry only about implementing the rule correctly.

MT1: Q6 (stack limits)

Key: Need assistance from compiler to implement this. Before the compiler makes a
decrement to the stack pointer, the compiler should issue checks to see if the
decrement would go past Oxffff0000. If it does, then the function should return O.
Else, esp should be decremented as normal, and execution should resume as
normal.

Some possible problems:
- Since the stack pointer has to be checked prior to every modification to esp,

this will dramatically slow down programs.
- Wrap around: suppose we decrement esp by a value so large, that the esp
wraps around. For instance, suppose esp=0xFFFF0004-:
subl $Ox7ffffffff, %esp // esp=0x7FFF0005
The compiler needs to carefully handle this case.

MT1: Q7 (x86 -> C)

7 (12 minutes). Give C source code that corresponds to the following x86-64
assembly language code. Explain briefly and at a high level what useful thing
the function does.

sub: movq %rdi, %rdx

subq %rsi, Y%rdx
xorq %rdi, %rsi
xorq%rdi, %rdx

movq %rdx, %rax
andq %rsi, Y%rax
shrq$63, %rax

ret

MT1: Q7 (x86 -> C)

The function returns 1 if x-y overflows, x being %rdi and y
being %rsi.
((x *y) & (x* (x-y))) > 63

MT1: Q8 (C, x86 matchmaker)

S T T T T
T O U T VY% o< A mMX

MT1: Q9 (ack!)

Consider the following program:
1unsigned ack (unsigned m, unsigned n) {

2 if(m==0)
3 returnn+1;
4 if (n ==0)
5 returnack (m-1,1); For each instruction in the implementation,
6 return ack (m - 1 identify the corresponding source-code line
’ number. If an instruction corresponds to two or
7 ack (m, more source-code line numbers, write them all
8 n-1)); down and explain.

MT1: Q9 (ack!)

20

21

22

23

24

25

26

27

28

29

OO N|IN|N|N]|]OW|OW]|N| O

11 2
12 3
13 6
14 2
15 N/A
16 6
17 N/A
18 4
19 6

30

N/A

Implementation Source Line
Line

1 N/A
2 1

3 1

4 1

5 1

6 2

7 2

8 586
9 4

10 N/A

31

3/9

32

33

3/9

34

3/9

