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Announcements

● Lab 2 due yesterday (4/30)
● HW 4 out! (Due: 5/8) 
● Lab 3 out! (Due: 5/13)

○ Stack smashing!
■ "Smashing" Lab

(couldn't help myself)



MT 1 Grades Up

● Midterm 1 grades are up
○ Mean: 43 Median: 42 Std: 13

■ 242 students

● Pretty good bell curve
● Check that points add up correctly

○ Verify with my.ucla.edu



This Week

● MT 1
● Floating Point
● Program Optimizations/Performance



Floating Point

● So far, have worked with integer data types
○ signed: two's complement
○ unsigned

● Integers: 0, 1, 42, -101, 9001

How to represent a non-integer, like 0.5?

Answer: Floating Point Representation!



Floating Point (IEEE 754)

● Goal: Represent rational numbers with a 
fixed number of bits
○ float: 32 bits "single" precision
○ double: 64 bits "double" precision



Floating Point: Bits of Me (Single)

Sign 
bit

"Exponent" 
Field

"Fraction" Field

1 bit 8 bits 23 bits



Two Types of FP

● There are two different "types" of a floating 
point number

● Case 1: "Normalized"
○ Common case. Represent large and moderately-

small values.
● Case 2: "Denormalized"

○ Represent very small values (close to 0).



Case 1: Normalized

Exp is not all 0's or all 1's

s = sign bit
M = 1 + f
E = e - Bias Bias = 

k is # bits in exp

=
127 for single

1023 for double



Case 1: Normalized

s = sign bit
M = 1 + f
E = e - Bias

Bias = 
k is # bits in exp

=
127 for single

1023 for double

0100 0010 0010 1000 0000 0000 0000 0000

What is V?
exp = 100 0010 0 = 0x84 = 8*16 + 4 =  132
f = 010 1000 0000 0000 0000 0000
  = 0*2^(-1) + 1*2^(-2) + 0*2^(-3) + 1*2^(-4) = 0.3125
V = (-1)^0 * (1 + 0.3125) * 2^(132 - 127) = 42.0



Case 2: Denormalized

Exp is all 0's or all 1's

s = sign bit
M = f
E = 1 - Bias Bias = 

k is # bits in exp

=
127 for single

1023 for double



Case 2: Denormalized

s = sign bit
M = f
E = 1 - Bias

Bias = 
k is # bits in exp

=
127 for single

1023 for double

1000 0000 0010 1100 0000 0000 0000 0000

What is V?
exp = 000 0000 0 = 0
f = 010 1100 0000 0000 0000 0000
  = 1*2^(-2) + 1*2^(-4) + 1*2^(-5) = 0.34375
V = (-1)^1 * (0.34375) * 2^(1-127)
  = -4.040761830951613e-39



Case 3: Special Values

● Represent infinity, NaN via certain bit 
patterns

Note: +Inf and -Inf are different (sign bit).



Case 3: Special Values

● Can represent 0.0 in two ways!
○ All bits 0, and sign bit is 1: -0.0
○ All bits 0, and sign bit is 0: +0.0

● -0.0 and +0.0 are *usually* the same

But: 1.f / 0.f -> +Inf
     1.f / -0.f -> -Inf



Example: Largest/Smallest
● Suppose we use an 8-bit floating-point format. There 

are 4 exponent bits, and 3 fraction bits. 
What is the bias? 2^(4-1)-1 = 7

What is the smallest/largest 
positive value?

Smallest: 0 0000 001
Largest: 0 1110 111

How to represent 1.0? 0 0111 000



Rounding

● Floating point still can't represent every 
rational number exactly
○ Why? Finite number of bits (32, 64)

● IEEE standard defines several rounding 
modes



Four Rounding Modes



FP Operations

● After every operation on two floating point 
values, a round is performed.
○ Ex: (f+g) => round(f+g)



FP: Addition

● Addition commutes correctly
○ (f+g) = (g+f)

● Addition is generally *not* associative
○ (3.14 + 1e10)-1e10 = 0.0
○ 3.14 + (1e10-1e10) = 3.14



FP: Multiplication

● Generally not associative
○ (1e20*1e20)*1e-20 = +Inf
○ 1e20*(1e20*1e-20) = 1e20

● Does not distribute over addition
○ 1e20*(1e20 - 1e20) = 0
○ 1e20*1e20 - 1e20*1e20 = NaN



Exercise



Exercise



C FP: Casting Rules

● In C, exists float and double data types
○ Can cast to/from float types to integer types.
○ Can lose information due to rounding/truncation!

#include <stdio.h>
int main() {
    float v = 42.675;
    int foo = (int) v;
    printf("foo is: %d\n", foo);
    return 0;
}

$ gcc -o code code.c
$ ./code
foo is: 42



Casting Rules Quiz
Exact conversion? Can overflow/underflow?

int -> float

int -> double

float -> double

double -> float

double -> int

float -> int



Casting Rules Quiz
Exact conversion? Can overflow?

int -> float No! Float can't repr very 
large ints.

No

int -> double Yes No

float -> double Yes No

double -> float No Yes

double -> int No: rounded toward zero 
(1.99 -> 1, -1.99 -> -1)

Yes

float -> int No: rounded toward zero Yes



Example: int vs float
Can you find an int that can't be repr by a float?

Can you find an int that can't be repr by a 
double?



Midterm 1: Post mortem

9 Questions Total
In my opinion, by difficulty:

Easy/Medium: 1, 3, 6, 8, 9
Medium-Hard: 2, 4, 7
Tricky: 5



MT1: Q1 (leal)
1 (12 minutes).  Which integer constants can a
single x86 leal instruction multiply an
arbitrary integer N by?  The idea is that one
puts N into a register, executes the leal
instruction, and the bottom 32 bits of N*K will
be put into some other register, where K is a
constant.  For which values of K can this be
done?  For each such value, show an leal
instruction that implement that value.



MT1: Q1 (leal)
N*1 = lea (, N, 1)
N*2 = lea (, N, 2) 
N*4 = lea (, N, 4)
N*8 = lea (, N, 8)

N*2 = lea (N, N, 1)
N*3 = lea (N, N, 2)
N*5 = lea (N, N, 4)
N*9 = lea (N, N, 8)

=> {1, 2, 3, 4, 5, 8, 9}
7 possibilities



MT1: Q2 (byte reversal)
2 (12 minutes).  On the x86-64, what's the
fastest way to reverse each 8-bit byte in a
64-bit unsigned integer?  For example, given the
input integer 0x0123456789abcdef, we want to
compute 0x80c4a2e691d5b3f7; this is because 0x01
is binary 00000001 and reversing it yields binary
10000000 which is 0x80, and similarly the
bit-reverse of 0x23 is 0xc4, and so forth until
the bit-reverse of 0xef is 0xf7.  Write the code
in C, and estimate how many machine instructions
will be generated (justify your estimate).



MT1: Q2 (byte reversal)
long long reverseBits(long long x) {

  unsigned long long m1 = 0xF0F0F0F0F0F0F0F0;

  unsigned long long m1_2 = 0x0F0F0F0F0F0F0F0F;

  unsigned long long m2 = 0xCCCCCCCCCCCCCCCC;

  unsigned long long m2_2 = 0x3333333333333333;

  unsigned long long m3 = 0xAAAAAAAAAAAAAAAA;

  unsigned long long m3_2 = 0x5555555555555555;

  unsigned long long l = x;

  l = ((l&m1) >> 4) | ((l&m1_2) << 4);

  l = ((l&m2) >> 2) | ((l&m2_2) << 2);

  l = ((l&m3) >> 1) | ((l&m3_2) << 1);

}
This requires 6 AND's, 6 shifts, and 3 OR's for a total of 15 instructions.



MT1: Q2 (byte reversal)
long long reverseBits(long long x) {

  unsigned long long m1 = 0xF0F0F0F0F0F0F0F0;

  unsigned long long m2 = 0xCCCCCCCCCCCCCCCC;

  unsigned long long m3 = 0xAAAAAAAAAAAAAAAA;

  unsigned long long l = x;

  l = (l&m1)>>4 | (l<<4)&m1;

  l = (l&m2)>>2 | (l<<2)&m2;

  l = (l&m3)>>1 | (l<<1)&m3;

  return l;

}

Alternate solution



MT1: Q3 (get eip)
3 (12 minutes).  On the x86, there is no 'pushl
%eip' instruction.  Suppose you want to push the
instruction pointer onto the stack anyway.
What's the best way to do it?  If your method
takes three instructions A, B, C, the value
pushed onto the stack should be the address of D,
the next instruction after C.



MT1: Q3 (get eip)

    call foo

foo:

    … // here, top of stack is eip



MT1: Q4 (gdb + fin)
4 (12 minutes).  Explain two different methods
that GDB can implement its 'fin' command (which
finishes execution of the current function), one
method with hardware breakpoints and one without.
For each method, say what happens if the current
function calls another function via tail
recursion.



MT1: Q4 (gdb + fin)

Idea: Set a breakpoint at the saved return address 
addr

Hardware (x86): Move addr into one of the debug 
registers DR0 - DR3. When the processor does the 
return, and is about to execute addr, hardware will 
throw a debug exception.



MT1: Q4 (gdb + fin)

Software: Modify gdb to replace the instruction 
at the saved return address with an INT3 
(debug interrupt instruction).
If the user wishes to continue executing after 
the INT3 breakpoint is triggered, gdb can 
"restore" the overwritten instruction.



MT1: Q4 (gdb + fin)

For both methods: tail-recursion will still work, 
since we are putting a breakpoint at the caller-
saved return address.



MT1: Q5 (compiler bug)
Consider the following C functions and their translations to x86 code.

  int f (int *p, long *q) {
    ++*p;
    ++*q;
    return *p;
  }
  int g (int *p, char *q) {
    ++*p;
    ++*q;
    return *p;
  }

   f: movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addl $1, %eax
movl %eax, (%ecx)
addl $1, (%edx)
ret

   g: movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addb $1, (%edx)
addl $1, %eax
movl %eax, (%ecx)
ret

There's a compiler bug: one of these functions is
translated incorrectly, and the other one is OK.
Identify the bug, and explain why the other
function is translated correctly even though one
might naively think that its translation has a
similar bug.



MT1: Q5 (compiler bug)
Key: Pointer aliasing bug.
Aliasing in g is the bug. In g, q can point to a byte within the 
int of p. Thus, ++*p can affect the value of *q. However, g’s 
assembly code adds 1 to q before adding 1 to p. To correct 
this, the instructions should add 1 to %eax first, then movl 
%eax, (%ecx), then addb $1, (%edx), then movl (%ecx), %
eax. f is correct because integer and long are stored in 
different memory address so that order doesn’t matter.



MT1: Q5 (compiler bug)
Consider the following C functions and their translations to x86 code.

  int f (int *p, long *q) {
    ++*p;
    ++*q;
    return *p;
  }
  int g (int *p, char *q) {
    ++*p;
    ++*q;
    return *p;
  }

   f: movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addl $1, %eax
movl %eax, (%ecx)
addl $1, (%edx)
ret

   g: movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addb $1, (%edx)
addl $1, %eax
movl %eax, (%ecx)
ret

There's a compiler bug: one of these functions is
translated incorrectly, and the other one is OK.
Identify the bug, and explain why the other
function is translated correctly even though one
might naively think that its translation has a
similar bug.

   g: movl 4(%esp), %ecx
movl 8(%esp), %edx
movl (%ecx), %eax
addl $1, %eax
movl %eax, (%ecx)
addb $1, (%edx)
ret



MT1: Q6 (stack limits)
6 (12 minutes).  Suppose we have allocated memory
locations 0xffff0000 through 0xffffffff for the
stack, and we are worried that our x86 program
might overflow the stack.  We decide to institute
the ironclad rule that if a function ever
attempts to grow the stack past the allocated
bounds, the function immediately stops what it's
doing and returns 0, thus shrinking the stack.
Explain the problems you see in implementing this
rule.  Don't worry about the effects of this rule
on the user program; worry only about implementing the rule correctly.



MT1: Q6 (stack limits)
Key: Need assistance from compiler to implement this. Before the compiler makes a 
decrement to the stack pointer, the compiler should issue checks to see if the 
decrement would go past 0xffff0000. If it does, then the function should return 0. 
Else, esp should be decremented as normal, and execution should resume as 
normal.
Some possible problems:

- Since the stack pointer has to be checked prior to every modification to esp, 
this will dramatically slow down programs.

- Wrap around: suppose we decrement esp by a value so large, that the esp 
wraps around. For instance, suppose esp=0xFFFF0004:

subl $0x7ffffffff, %esp     // esp=0x7FFF0005

The compiler needs to carefully handle this case.



MT1: Q7 (x86 -> C)
7 (12 minutes).  Give C source code that corresponds to the following x86-64 
assembly language code.  Explain briefly and at a high level what useful thing 
the function does.

  sub: movq %rdi, %rdx
subq %rsi, %rdx
xorq%rdi, %rsi
xorq%rdi, %rdx
movq %rdx, %rax
andq %rsi, %rax
shrq$63, %rax
ret



MT1: Q7 (x86 -> C)
The function returns 1 if x-y overflows, x being %rdi and y 
being %rsi.
((x ^ y) & (x ^ (x - y))) >> 63



MT1: Q8 (C, x86 matchmaker)
a=D

b=A

c=E

d=L

e=J

f=C

g=B

h=H

i=K

j=I

k=F

l=G



MT1: Q9 (ack!)
Consider the following program:
     1unsigned ack (unsigned m, unsigned n) {
     2  if (m == 0)
     3    return n + 1;
     4  if (n == 0)
     5    return ack (m - 1, 1);
     6  return ack (m - 1,
     7       ack (m,
     8    n - 1));
     9}

For each instruction in the implementation,
identify the corresponding source-code line
number.  If an instruction corresponds to two or
more source-code line numbers, write them all
down and explain.



MT1: Q9 (ack!)
Implementation 
Line

Source Line

1 N/A

2 1

3 1

4 1

5 1

6 2

7 2

8 5&6

9 4

10 N/A

11 2

12 3

13 6

14 2

15 N/A

16 6

17 N/A

18 4

19 6

20 5

21 7

22 8

23 8

24 7

25 7

26 7

27 2

28 6

29 6

30 N/A

31 3/9

32 3

33 3/9

34 3/9


