
CS 33 Week 6
Section 1G, Spring 2015

Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

● HW 4: Due 5/8 (Today!)
● Lab 3: Due 5/13 (Wednesday)

○ "Smashing" Lab
● MT 2: 5/19

○ Pushed back!

Lab 3: "Getting Started"

● Tip: If you're having trouble getting started
on Lab 3, check out the guide here:
○ http://www.eric-kim.net/cs33_page/

■ "Getting started with Lab 3"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Overview

● Program Performance/Optimization
● Memory Hierarchy
● Lab 3 ("smashing" lab)

Program Performance

● So far, we have reasoned about code
performance at a high-level
○ Example: binary search of a sorted array of length N

has O(log N) behavior

In this class: reason at the compiler-
level *and* processor-level!

Program Performance

● Compiler-level considerations
○ gcc compiler is very conservative
○ Will not optimize if it compromises program behavior

● Skill: How to write C code to encourage
compiler optimizations?

Program Performance

● Processor-level considerations
○ Instruction pipelining
○ Exploiting parallelism
○ Out-of-Order execution (OoO)

● Skill: How to write C code to "encourage"
compiler to generate assembly code that
fully-utilizes processor?

Program Example

data_t can be an int, float, or double

Program Example

IDENT is either 0 (add), or 1 (mult).
OP is either + or *.

Loop Unrolling

● Reason 1: Less overhead due to loop
bookkeeping (ie "i<n", "i++).

● Reason 2: Exposes structure in code,
allowing compiler to perform additional
optimizations

Loop Unrolling
void combine5(vec_ptr v, data_t *dest) {

 long int i; long int length = vec_length(v);

 long int limit = length-1;

 data_t *data = get_vec_start(v);

 data_t acc = IDENT;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2)

 acc = (acc OP data[i]) OP data[i+1];

 /* Finish any remaining elements */

 for (; i < length; i++)

 acc = acc OP data[i];

 *dest = acc;

}

Can unroll loop
further (ie k > 2)

Loop Unrolling

● Speedup is due to reduced overhead
relating to loop maintenance/bookkeeping

● Also: allows reassociation optimization
(revisit later)

Multiple Accumulators

● Modern processors have fully pipelined
add/mult

● Critical bottleneck in combine: we have to
write to acc after each mult.
○ Why is this a problem?

○ How can we overcome?

Constrains each mult to have to
occur sequentially.

Remove this constraint! Write to
separate accumulators.

Multiple Accumulators
During each iteration of loop
body, processor can perform both
adds/mults in a fully-pipelined
manner.

Question: Suppose mult takes 3
clock cycles (ie 3 stages).
How many cycles does it take to
perform one iteration of the loop
body in
(1) A fully-pipelined mult?
(2) A non-pipelined mult?

4 cycles
6 cycles

Pipelining
Not convinced? Suppose we had unrolled combine() 4x, ie
there are four lines in the loop body.
Question: Suppose mult takes 3 clock cycles (ie 3 stages).
How many cycles does it take to complete one loop
iteration in:
(1) A fully-pipelined functional unit?
(2) A non-pipelined functional unit?

6 cycles!
12 cycles

Pipelining
1 2 3

a

b a

c b a

d c b

 d c

 d

=> 6 cycles

1 2 3

a

 a

 a

b

 b

 b

…
=> 12 cycles

vs.

Reassociation Transformation

● Another way to exploit pipelined acc/mult
○ Assume we are working with integers, not floats

● Recall: Associative Property
○ a*(b*c) = (a*b)*c

● Idea: "Move" parenthesis for huge gains!

Reassociation
Transformation

Used to be:

acc = (acc OP data[i])
 OP data[i+1];

Why does this improve things?
During each iteration, the first multiplication:
 (data[i] OP data[i+1])

is independent of the second multiplication:
 acc OP (data[i] OP data[i+1])

In particular: at iteration i, while we are computing:
 acc OP (data[i] OP data[i+1])

We can also start computing next iteration's mult:
 (data [i+1] OP data[i+2])

Association: Int vs Float

● Question: Can we play the reassociation
trick if we were working with floating point
values?

Answer: No!

Question: Give an example where the associative
property fails to hold for floating point values.

Things to watch out for

● Keep these things in the back of your mind
while coding high-performance software

● Register spilling
● Branch misprediction penalties

Register spilling

● Compiler aims to keep all local variables on
registers

● Too many local variables -> Gotta store em'
on the stack
○ Penalties: Instead of read/write to registers (instant!),

have to read/write to memory (not instant!)

Branch misprediction

● Modern processors employ speculative
execution to fully utilize CPU for branches
○ Fancy term for: guess which branch to take

● If we guess wrong, then we need to undo
the instructions we executed!
○ Flush the pipeline, and start again at mispredicted

instruction

Some numbers for fun...

"Numbers every programmer should know"

Latency numbers every programmer should know
Jeff Dean (http://research.google.com/people/jeff/)

(1.5e-7 seconds)

(More interesting numbers…)
Lets multiply all these durations by a billion:
Minute:
 L1 cache reference 0.5 s One heart beat (0.5 s)
 Branch mispredict 5 s Yawn
 L2 cache reference 7 s Long yawn
 Mutex lock/unlock 25 s Making a coffee
Hour:
 Main memory reference 100 s Brushing your teeth
 Compress 1K bytes with Zippy 50 min One episode of a TV show (including
ad breaks)
Day:
 Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day

(More interesting numbers…)
Week
 SSD random read 1.7 days A normal weekend
 Read 1 MB sequentially from memory 2.9 days A long weekend
 Round trip within same datacenter 5.8 days A medium vacation
 Read 1 MB sequentially from SSD 11.6 days Waiting for almost 2 weeks for a delivery
Year
 Disk seek 16.5 weeks A semester in university
 Read 1 MB sequentially from disk 7.8 months Almost producing a new human being
 The above 2 together 1 year
Decade
 Send packet CA->Netherlands->CA 4.8 years Average time it takes to complete a
bachelor's degree

From: http://architects.dzone.com/articles/every-programmer-should-know

Lab 3 ("smashing" lab)

Lab 3 ("smashing lab")

● Reminder: Due Wednesday
● Mix of source code reading, gdb inspecting,

and exploit generation (the fun part!)
● Start now!

Lab 3: "Getting Started"

● Tip: If you're having trouble getting started
on Lab 3, check out the guide here:
○ http://www.eric-kim.net/cs33_page/

■ "Getting started with Lab 3"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Additional Resources

● For a review of stack smashing, canaries,
etc., check out my Week 4 discussion notes:
○ http://eric-kim.net/cs33_page/

■ Starts on slide 30, "Bounds Checking"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Tips on Lab

● How does '-fstack-protector-strong' work?
● How does the Address Sanitizer (-

fsanitize=address) work?
○ https://code.google.com/p/address-sanitizer/

https://code.google.com/p/address-sanitizer/
https://code.google.com/p/address-sanitizer/

Recall: Stack Randomization

● Many exploits rely on knowing addresses of
local variables/buffers on the stack
○ Easiest: absolute memory addrs, ie 0xfffffc29c

Defense: Randomize stack addresses!
Don't grow stack at some fixed memory location (say,

0xffffff00). Instead, add random offsets for each
program execution (0xfffffff00 + rand()).

(An instance of ASLR: Address Space Layout Randomization)

Stack Randomization

● ASLR isn't fool proof

Scenario: Suppose attacker needs to guess the stack
address of a local buffer (ie to point return address back to
the buffer).
How can attacker do this on a system with stack
randomization?

Answer: NOP-sleds!

Stack Randomization

● Question: Do seasnet.ucla.edu machines
employ stack randomization?
○ How to check?

Related Question: Suppose a machine does employ
stack randomization. On this machine, you run gdb on
a program.
Within gdb, will stack addresses still be random?

Writing Config Files

● In the lab, at one point you'll need to
handcraft a configuration file
○ src/thttpd-no -p 50000 -D -C mybadness.txt

Contents of: mybadness.txt
00000000000000
00000000000000
…
0000000

Suppose the program reads this text file into a
"char line[LEN]" array.
Question: What bytes get written to the array?

Answer: 0x30 0x30 0x30 0x30 … 0x30 0x30
 Text files are ASCII-encoded:
 "0" -> 0x30 "1" -> 0x31, "a" -> 61, etc.

Writing Config Files

● How to write arbitrary bytes to the array?
● want to write this:

○ 0xffffabcd

● not this:
○ "0x66 0x66 0x66 0x66 0x61 0x62 0x63 0x64"

■ 0x6666666661626364

Writing Config Files

● Simple way: Write a C program to write your
config file
○ stdio.h contains basic file read/write library
○ http://www.cplusplus.com/reference/cstdio/fputc/

http://www.cplusplus.com/reference/cstdio/fputc/
http://www.cplusplus.com/reference/cstdio/fputc/

stdio.h: Basic C I/O

Useful functions: fopen(), fclose(), fputc()

Instead of writing ASCII values
'a'-'z', can directly write raw bytes:
 fputc(0xff, pFile);
 fputc(0xff, pFile);
 fputc(0xab, pFile);
 fputc(0xcd, pFile);

(Little-endian vs big-endian -
something to worry about for
exploit?)

Q8: Generating .s files

● Odd: running the commands from spec
results in assembly being saved to .o files,
rather than .s files

$ make clean

$ make CFLAGS='-m32 -S -O2 -fno-inline -fstack-protector-strong'

$ mv src/thttpd.o src/thttpd-sp.s

repeat for thttpd-as.s, thttpd-no.s

Workaround: Just rename.o files to .s files (see Piazza Question @290)

Classic Stack Smash Attack

● Necessary Ingredients
○ Find a vulnerable buffer to overflow
○ Handcraft exploit code (ie x86 op codes)
○ Write exploit code to buffer

■ Overwrite saved return address on stack to the
stack address of your exploit code

● Obstacles:
○ NX bit, stack randomization

Idea: Utilize library!

● Trick victim to execute arbitrary code
○ Hard! Lots of defenses.

● Trick victim to execute already-available
code
○ Easier! Might be enough to achieve exploit.
○ Return-oriented programming (ROP) is built on top

of this principle

<unistd.h>

● POSIX operating system API
○ defined by *all* variants of UNIX, including MacOSX,

GNU/Linux, etc.
● Defines interface to talk to operating system

○ File read/write, device handling, system calls, etc

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html

<unistd.h>
int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html

Allows C programs to ask the OS to run programs.

Note: The shell (ie terminal) is also a program!

Can ask the shell to run programs for us!

http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html

Example: execl
#include <unistd.h>

int main() {

 execl("/bin/sh", "/bin/sh", "-c", "ls", NULL);

}

$ gcc -o try_execl try_execl.c
$./try_execl
try_execl try_execl.c

