CS 33 Week 6

Section 1G, Spring 2015
Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

e HW 4: Due 5/8 (Today!)

e Lab 3: Due 5/13 (Wednesday)
o "Smashing" Lab

e MT 2: 5/19

NOT SUREIFGOOD
o Pushed back! NEWS)

%

memegenerator.net

Lab 3: "Getting Started™

e Tip: If you're having trouble getting started

on Lab 3, check out the guide here:

o http://www.eric-kim.net/cs33_page/
m "Getting started with Lab 3"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Overview

e Program Performance/Optimization
e Memory Hierarchy
e Lab 3 ("smashing" lab)

Program Performance

e So far, we have reasoned about code
performance at a high-level

o Example: binary search of a sorted array of length N
has O(log N) behavior

In this class: reason at the compiler-
level *and* processor-level!

Program Performance

e Compiler-level considerations

o gcc compiler is very conservative
o Will not optimize if it compromises program behavior

e SKill: How to write C code to encourage
compiler optimizations?

Program Performance

e Processor-level considerations
o Instruction pipelining
o Exploiting parallelism
o Out-of-Order execution (O00)

e Skill: How to write C code to "encourage”
compiler to generate assembly code that
fully-utilizes processor?

Program Example

len /en 0 1 2 len_1
data .

Y

Figure 5.3 Vector abstract data type. A vector is represented by header information
plus array of designated length.

code/opt/vec.h
/* Create abstract data type for vector */
typedef struct {
long int len;
data_t *data;
} vec_rec, *vec_ptr;

L A W N =

code/opt/vec.h

data_t can be an int, float, or double

Program Example

/* Implementation with maximum use of data abstraction */

1

2 void combinel(vec_ptr v, data_t *dest)
3 A

4 long int 1i;

5

6 *dest = IDENT;

7 for (i = 0; i < vec_length(v); i++) {
8 data_t val;

9 get_vec_element (v, i, &val);
10 *dest = *dest 0P val;

11 }

12 }

Figure 5.5 Initial implementation of combining operation. Using different declara-
tions of identity element IDENT and combining operation OP, we can measure the routine
for different operations.

IDENT is either 0 (add), or 1 (mult).
OP is either + or *.

Loop Unrolling

e Reason 1: Less overhead due to loop

bookkeeping (ie "i<n", "i++).
e Reason 2: Exposes structure in code,
allowing compiler to perform additional

optimizations

Loop Unrolling

void combine5(vec_ptr v, data_t *dest) { Can unroll |00p
long int i; long int length = vec_length(v); further (|e k > 2)
long int limit = length-1;
data_t *data = get vec_ start(v);
data_t acc = IDENT;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2)
acc = (acc OP data[i]) OP data[i+1];
/* Finish any remaining elements */
for (; i < length; i++)
acc OP data[i];

*dest = acc;

acc

Loop Unrolling

e Speedup is due to reduced overhead
relating to loop maintenance/bookkeeping

e Also: allows reassociation optimization
(revisit later)

Multiple Accumulators

e Modern processors have fully pipelined

add/mult
e Critical bottleneck in combine: we have to

write to acc after each mult.
o Why is this a problem?

Constrains each mult to have to
occur sequentially.

o How can we overcome?
Remove this constraint! Write to

separate accumulators.

Multiple Accumulators

During each iteration of loop
body, processor can perform both
adds/mults in a fully-pipelined
manner.

Question: Suppose mult takes 3
clock cycles (ie 3 stages).

How many cycles does it take to
perform one iteration of the loop
body in

(1) A fully-pipelined mult? 4 cycles
(2) A non-pipelined mult? g cycles

oo ~N (@) ()] BN w N —_

(] AN w N — (e \O

16
17
18
9
20
21
22

/* Unroll loop by 2, 2-way parallelism */

void combine6(vec_ptr v, data_t *dest)

{

long int 1i;

long int length = vec_length(v);
long int limit = length-1;
data_t *data = get_vec_start(v);
data_t accO = IDENT;

data_t accl = IDENT;

/* Combine 2 elements at a time */

for (i = 0; i < limit; i+=2) {
accO0 = accO OP datal[i];

accl OP datali+1];

accl

}

/* Finish any remaining elements */
for (; i < length; i++) {

accO = accO OP datal[i];
}

xdest = accO OP acci;

Pipelining

Not convinced? Suppose we had unrolled combine() 4x, ie
there are four lines in the loop body.

Question: Suppose mult takes 3 clock cycles (ie 3 stages).
How many cycles does it take to complete one loop
iteration in:

(1) A fully-pipelined functional unit? 6 cycles!
(2) A non-pipelined functional unit? 12 cycles

Pipelining

123 123
a a
b a a
c b a VS. d
dcb b

d c b

d b

=> 6 cycles

=> 12 cycles

Reassociation Transformation

e Another way to exploit pipelined acc/mult
o Assume we are working with integers, not floats

e Recall: Associative Property
o a*(b*c) = (a’b)’c
e |dea: "Move" parenthesis for huge gair<!

/* Change associativity of combining operation */

1
1 - 2 void combine7(vec_ptr v, data_t *dest)
Reassociation ° 7
Transformation tong int i;
5 long int length = vec_length(v);
6 long int limit = length-1;
7 data_t *data = get_vec_start(v);
Used to be: 8 data_t acc = IDENT;
9
10 /* Combine 2 elements at a time */
acc = (acc OoP data[l]) 11 for (i = 0; 1 < limit; i+=2) {
OP data[i+1]; =12 acc = acc 0P (datal[i] OP datali+1]);
13 +
14
15 /* Finish any remaining elements */
16 for (; i < length; i++) {
17 acc = acc 0P datalil;
18 +
19 *dest = acc;

20 }

Why d

Data-flow representation
of combine?7 operating
on a vector of length n.
We have a single critical
path, but it contains only
n/2 operations.

data[0]

data[1]

-

data[2]

data[3]

data[n-2]

data[n-1]

load [

add

oes this improve things?

Critical path

During each iteration, the first multiplication:
(data[i] OP data[i+1])

is independent of the second multiplication:
acc OP (data[i] OP data[i+1])

In particular: at iteration i, while we are computing:
acc OP (data[i] OP data[i+1])

We can also start computing next iteration's mult:
(data [i+1] OP data[i+2])

Association: Int vs Float

e Question: Can we play the reassociation
trick if we were working with floating point
values”?

Answer: No!

Question: Give an example where the associative
property fails to hold for floating point values.

Things to watch out for

e Keep these things in the back of your mind
while coding high-performance software

e Register spilling

e Branch misprediction penalties

Register spilling

e Compiler aims to keep all local variables on
registers

e Too many local variables -> Gotta store em'’
on the stack

o Penalties: Instead of read/write to registers (instant!),
have to read/write to memory (not instant!)

Branch misprediction

e Modern processors employ speculative

execution to fully utilize CPU for branches
o Fancy term for: guess which branch to take

e |f we guess wrong, then we need to undo
the instructions we executed!

o Flush the pipeline, and start again at mispredicted
Instruction

Some numbers for fun...

operation v

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy
Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Latency numbers every programmer should know
Jeff Dean (http://research.google.com/people/jeff/)

"Numbers every programmer should know"

latency (ns) v

0.5

5

7

25

100

3,000

20,000

250,000

500,000

10,000,000

20,000,000
150,000,000 <— (1.5e-7 seconds)

(More interesting numbers...)

Lets multiply all these durations by a billion:
Minute:
L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5 s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee
Hour:
Main memory reference 100 s Brushing your teeth

Compress 1K bytes with Zippy 50 min One episode of a TV show (including
ad breaks)

Day:
Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day

(More interesting numbers...)

#H# Week
SSD random read 1.7 days A normal weekend
Read 1 MB sequentially from memory 2.9 days A long weekend
Round trip within same datacenter 5.8 days A medium vacation

Read 1 MB sequentially from SSD 11.6 days Waiting for almost 2 weeks for a delivery
Year

Disk seek 16.5 weeks A semester in university
Read 1 MB sequentially from disk 7.8 months Almost producing a new human being
The above 2 together 1 year

Decade

Send packet CA->Netherlands->CA 4.8 years Average time it takes to complete a
bachelor's degree

From: http.//architects.dzone.com/articles/every-programmer-should-know

Lab 3 ("smashing” lab)

Lab 3 ("smashing lab")

e Reminder: Due Wednesday

e Mix of source code reading, gdb inspecting,
and exploit generation (the fun part!)

e Start now!

Lab 3: "Getting Started™

e Tip: If you're having trouble getting started

on Lab 3, check out the guide here:

o http://www.eric-kim.net/cs33_page/
m "Getting started with Lab 3"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Additional Resources

e For areview of stack smashing, canaries,

etc., check out my Week 4 discussion notes:
o http://eric-kim.net/cs33_page/
m Starts on slide 30, "Bounds Checking"

http://eric-kim.net/cs33_page/
http://eric-kim.net/cs33_page/

Tips on Lab

e How does '-fstack-protector-strong' work?
e How does the Address Sanitizer (-

fsanitize=address) work?
o https://code.google.com/p/address-sanitizer/

https://code.google.com/p/address-sanitizer/
https://code.google.com/p/address-sanitizer/

Recall: Stack Randomization

e Many exploits rely on knowing addresses of

local variables/buffers on the stack
o Easiest: absolute memory addrs, ie oxfffffc29c

Defense: Randomize stack addresses!

Don't grow stack at some fixed memory location (say,
oxffffff00). Instead, add random offsets for each
program execution (oxfffffff00 + rand()).

(An instance of ASLR: Address Space Layout Randomization)

Stack Randomization

e ASLR isn't fool proof

Scenario: Suppose attacker needs to guess the stack

address of a local buffer (ie to point return address back to
the buffer).

How can attacker do this on a system with stack
randomization? JE

Answer: NOP-sleds!

Stack Randomization

e (Question: Do seasnet.ucla.edu machines

employ stack randomization”?
o How to check?

Related Question: Suppose a machine does employ
stack randomization. On this machine, you run gdb on

a program.
Within gdb, will stack addresses still be random?

Writing Config Files

e In the lab, at one point you'll need to

handcraft a configuration file
o src/thttpd-no -p 50000 -D -C mybadness.ixt

Suppose the program reads this text file into a

Contents of: mybadness.txt "char line[LEN]" array.
00000000000000 Question: What bytes get written to the array?
00000000000000

Answer: 9x30 0x30 Ox30 0x30 ... 0x30 0x30
0000000 Text files are ASCll-encoded:
"0"->0x30 "M1"->0x31, "a" -> 61, etc.

Writing Config Files

e How to write arbitrary bytes to the array?

e want to write this:
o oxffffabcd

e not this:

o "0x66 0x66 0x66 0x66 0x61 0x62 0x63 0x64"
B OXx6666666661626364

Writing Config Files

e Simple way: Write a C program to write your

config file

o stdio.h contains basic file read/write library
o http://www.cplusplus.com/reference/cstdio/fputc/

http://www.cplusplus.com/reference/cstdio/fputc/
http://www.cplusplus.com/reference/cstdio/fputc/

stdio.h: Basic C 1/O

/* fputc example: alphabet writer */

Instead of writing ASCII values #include <stdio.h>

'a’-'Z', can directly write raw bytes: int main ()
fputc(oxff, pFile); { e
fputc(oxff, pFile); char c: '
fputc(Oxab, pFile);

] pFile = fopen ("alphabet.txt","w");
fputc(@xcd, pFile); if (pFile!=NULL) {

for (c = 'A' ; € <= 'Z' ; c++)
fputc (¢ , pFile);

(Little-epdian vs big-endian - fclose (pFile):
something to worry about for }
exploit?) g return 0;

Useful functions: fopen(), fclose(), fputc()

Q8: Generating .s files

e (Odd: running the commands from spec
results in assembly being saved to .o files,
rather than .s files

Workaround: Just rename.o files to .s files (see Piazza Question @290)

$ make clean
$ make CFLAGS='-m32 -S -02 -fno-inline -fstack-protector-strong’
$ mv src/thttpd.o src/thttpd-sp.s

repeat for thttpd-as.s, thttpd-no.s

Classic Stack Smash Attack

e Necessary Ingredients
o Find a vulnerable buffer to overflow
o Handcraft exploit code (ie x86 op codes)
o Write exploit code to buffer
m Overwrite saved return address on stack to the
*stack™ address of your exploit code

e Obstacles:
o NX bit, stack randomization

Idea: Utilize library!

e Trick victim to execute arbitrary code
o Hard! Lots of defenses.

e Trick victim to execute already-available

code
o Easier! Might be enough to achieve exploit.

o Return-oriented programming (ROP) is built on top
of this principle

<unistd.h>

e POSIX operating system API

o defined by *all* variants of UNIX, including MacOSX,
GNU/Linux, etc.

e Defines interface to talk to operating system
o File read/write, device handling, system calls, etc

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html

<unistd.h>

int execl(const char *path, const char *argo, ... /*, (char *)0 */);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html

Allows C programs to ask the OS to run programs.

Note: The shell (ie terminal) is also a program!

Can ask the shell to run programs for us!

http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/execl.html

Example: execl

#include <unistd.h>

int main() {
eXeCl(ll/bin/Shll, Il/bin/shll, "—C", Illsll) NULL);

$ gcc -o try execl try execl.c
$./try execl
try execl try execl.c

