CS 33 Week 7

Section 1G, Spring 2015
Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

e Lab 3 was due Wednesday ("smashing” lab)
o May be on midterm 2!

e HW 5 out!
o Due: May 29th (2 weeks from now)

e Midterm 2 on Tuesday!
o Open book, open notes

Overview

e Concurrency
o Process-level, multiplexing, thread-level

e Synchronization
o Semaphores, Mutexes

e MT 2 Review

Motivation

e \Why do we care about concurrency?

Primarily: Performance!

To take advantage of multiple cores, run code in parallel.

(We've seen this already in Instruction-Level Parallelism,
such as pipelining)

Scenario

e \We have a problem that can be easily
broken up into separate "jobs".
e (Goal: efficiently execute all jobs.

Concurrency: Processes

e Simple idea: create a separate process for
each job.

Processes

e A process is an executing program
e Linux: Use 'top' or 'ps' to view processes

[ericki@lnxsrve4d ~]$ ps
TIME

Each process has a Process ID PID TTY
(PID). 7040 ?
7042 pts/27
7116 pts/27
26762 ?
26764 pts/19
26792 pts/19

00:
00:
00:
00:
00:
00:

00:

00:
00:
00:
00:
00:

00
00
00
00
00
00

-u ericki
CMD

sshd

bash
emacs
sshd

bash

pS

Processes in C: fork()

e In C, can create a new process with fork()

#include <stdio.h>
#include <sys/types.h>

int main() {

pid_t pid = fork();

int val = 0;

if (pid == 0) {
printf("In child process! pid was: %d\n", pid);
val = 7;

} else {
printf("In parent process! (Child's pid is: %d)\n", pid);
val = 42;

}

printf(" [val=%d] Exiting.\n", val);

return 0;

#include <stdio.h>
#include <sys/types.h>

int main() {

pid_t pid = fork();

int val = 0;

if (pid == 0) {
printf("In child process! pid was: %d\n", pid);
val = 7;

} else {
printf("In parent process! (Child's pid is: %d)\n", pid);
val = 42;

}

printf(" [val=%d] Exiting.\n", val);

return 0;

}
i g;:x;grﬁxfork extork.c Question: Can this
. program output other

. ' 3 .
In child process! pid was: © printout orders?

[val=7] Exiting.
In parent process! (Child's pid is: 17042)
[pid=42] Exiting.

fork() properties

e For most part, child and parent processes
are separate

e Separate memory/address space, registers,
etc.

e Note: Child inherits parent's open file
descriptors!

#include <stdio.h> $ gcc -o exfork2 exfork2.c
#include <sys/types.h>

jclude <sy | $./exfork2

void disp_file(FILE* f, int val) {

char 1line[100];

fgets(line, 99, f); .

1§ne[1001 = 0: Question: What gets output?
printf("[val=%d] File contents: %s\n", val, line);

}

. . Answer:
int main() {
FILE* T = fopen("myfile.txt", "r"); In parent process! (Child's pid
pid_t pid = fork(); is: 18063
int val = 0; 15)
if (pid == 6) { In child process! pid was: ©
printf("In child process! pid was: %d\n", pid); [val=42] File contents: badwolf
val = 7;
} else { [val=7] File contents: @
printf("In parent process! (Child's pid is: %d)\n", pid);
val = 42;
5 file(f 1
isp_file(f, val); 2|
return 0; Pil"‘ ..

#include <stdio.h>
#include <sys/types.h>

}

void disp_file(FILE* f, int val) { Child and parent *share*
char 1line[100]; . .
fgets(line, 99, f); file descriptor tables,
line[100] = O; i i I |
printf("[val=%d] File contents: %s\n", val, line); InCIUdmg seek locations!
int main() { . ;
FILEX = fopen("myfile.txt", "r"): FI).(. Add a Img th.at resets
Plf t pid id " fork(); pointer to beginning of file.
int val =

if (pid == 0) {
printf("In child process! pid was: %d\n", pid);

val = 7;
} else {
printf("In parent process! (Child's pid is: %d)\n", pid);
val = 42;
}' .
disp_file(f, val); void disp_file(FILE* f, int val) {
return 0; char 1ine[100];

. > fseek(f, 0, SEEK_SET);
fgets(line, 99, f);
line[100] = O;
printf("[val=%d] File contents: %s\n", val, line);

Processes: Pros/Cons

Pros

Simple to code. Processes can't interfere with each other (separate

memory/stack, etc.).
Utilizes *OS's* process scheduling system to maximize concurrency

(less work for us!)

Cons

Difficult for processes to communicate. Can still be done, but is

somewhat expensive.
Large overhead to spawning new processes - if each job is fairly

quick, then might simply be *faster* to do jobs in single process!

Multiplexing

e |dea: Only use *one™ process to perform
multiple jobs.
e "Take turns" executing each job.

Multiplexing

e Typical ingredients:
o select(), FD_SET, FD_ISSET, FD_CLEAR, etc.

Terminology: "blocking™

A function fn() is called "blocking" if it:

Halts execution of the current thread while fn() is
running.

int main() {
char* dataset = read dataset(); // blocking
float mn = compute_mean(dataset); // blocking
printf(" Mean is: %f\n", mn);
return 0;

}

Non-blocking

int main() {
struct waitstruct* rval = read dataset(); // non-blocking
while (rval->status == 0)
sleep(1);

float mn = compute_mean(rval->dataset); // blocking
printf(" Mean is: %f\n", mn);
return 9;

Multiplexing: Pros/Cons

Pros:

Shared memory, easy to communicate information between each job.

Cons:

Only one process runs at a time! No performance gains from parallelism
here.
Your program must be structured in a particular way to use this approach.

Threading

e "Lightweight" method of concurrency

e Similar to processes:
o Main thread spawns new threads

e Similar to multiplexing:
o All threads share same memory space

Best of both worlds?

Note: gcc and threads

e To use pthreads in your C programs, add the
"-Ipthread" option to gcc command:

$ gcc -o mythread mythread.c -1lpthread

\ J
|

Note: goes at end!

Example: C

#include <stdio.hs Question: What does program

#include <pthread.h> output?
#include <semaphore.h>

void* threadjob(void *arg) { Answer:
ey w2 7 (e are); (1) myval is: 42
printf(" Thread finished.\n"); Thread finished.
return NULL; (2) myval is: 7
}
int main() {
pthread_t pth; Questions: Are there other

int myval = 42;
printf(" (1) myval is: %d\n", myval);
pthread_create(&pth, NULL, threadjob, &myval);

possible outputs?

pthread_join(pth, NULL); Answer:
printf(" (2) myval is: %d\n", myval); No! pthread_join()
return 0; enforces a consistency.

Exam ple: C Question: What are the possible

#include <stdio.h> outputs of the program?

#include <pthread.h>

#include <semaphore.h> Answer:

void* threadjob(void *arg) { (1) myval is: 42 (1) myval is: 42
int* val = ((int*) arg); Thread finished. (2) myval is: 42
rval = 7; (2) myval is: 7 Thread finished.

printf(" Thread finished.\n");
return NULL;
}
int main() {
pthread_t pth;
int myval = 42;

printf(" (1) myval is: %d\n", myval); Suppose we
pthread_create(&pth, NULL, threadjob, &myval); removed that
printf(" (2) myval is: %d\n", myval); pthread_join() call...
return 9;

Threading: Pros/Cons

Pros:

Shared memory, easy to communicate information between threads.
Much less overhead than processes.
Performance improves due to parallel execution!

Cons:

Programmer must be careful about threads reading/writing to shared
memory. Concurrency bugs may occur if not careful.

Synchronization

e Threads allow a lightweight way to perform

concurrency with shared variables
o "With great power, comes great responsibility..."

Concurrency bugs: Program *sometimes™ works,
data is *sometimes™ wrong, crashes *sometimes™...

Must carefully govern access
to shared variables!

Semaphores

e Popular synchronization primitive
e A counter

o Semaphores are created with a fixed number of N
"tickets"

e |f N=1, then is a binary semaphore

o aka "mutex"

Operations
"l want access!"

void P(sem _t* s) =

Aka "sem_wait(s)". Decrements semaphore by 1 if possible. If not
possible, then wait until possible, ie another thread calls V().

~"I'm done!”

void V(sem t* s)

Aka "sem_post(s)", or "sem_wakeup(s)". Increments semaphore by 1.
If there are threads waiting to increment s, then this wakes up one of
the threads, allowing the thread to continue running.

Example: Bounded Shared Buffer

e "Producer/Consumer” Scenario
e Application: Playing a video
o Video decoder is constantly decoding frames and
placing them in a buffer (ie each frame is an image)

o Video player is constantly taking images from the
buffer, and displaying them on the screen

e (Guard access to buffer carefully

typedef struct {
int *buf; /* Buffer array */
int n; /* nb slots in buffer */
int front; /* buf[(front+l)%n] is first item */
int rear; /* buf[rearkn] is last item */
sem_t mutex; sem_t slots; sem t items;

} sbuf t;

First attempt

void insert(sbuf_t* sp, int item) { int remove(sbuf_t *sp) {

P(&sp->mutex); int x;
sp->buf[(++sp->rear)%(sp->n)] = item; P(&sp->mutex);

V(&sp->mutex); x=sp->buf[(++sp->front)%(sp->n)];

} V(&sp->mutex);
return Xx;
¥
.QU(TStIOI'IJZ[\{[\./ha”;iwrong with this Answer: Insert can overwrite existing
'mplementation s Any entries! No synchronization bugs though.

synchronization bugs?

Second attempt

void insert(sbuf_t* sp, int item) {
P(&sp->slots);
P(&sp->mutex);
sp->buf[(++sp->rear)%(sp->n)] = item;
V(&sp->mutex);
V(&sp->items);

Question: Anything wrong with this
implementation? Any synch bugs?

}

int remove(sbuf t *sp) {

int Xx;

P(&sp->items);

P(&sp->mutex);

x=sp->buf[(++sp->front)%(sp->n)];
V(&sp->mutex);

V(&sp->slots);

return Xx;

Answer: Nope!

MT2 Review

Floating Point

Program Optimization

(Basic) Processor Architecture
Instruction Level Parallelism
Concurrency

Synchronization

MT 1 topics

Q: Optimization

One compiler optimization makes use of the associative
property to break data dependencies:
acc=(acc*data[i])*data[i+1] vs acc=acc*(data[i]*data[i+1])
Would an optimization based on the commutative property
ever speed up a program? If so, give a scenario where a

speedup would occur due to the commutative property, and
explain why. If not, explain why not.

a+b=>b+a «— Commutative Property

A: Optimization

Applying the commutative property will not speed up
execution.

The processor is already utilizing the commutative property.
When the processor is determining which micro-instructions
to run, it will perform operations out-of-order to maximize
performance. For instance, if an Adder functional unit is
idle, the processor will send any (independent) pending
addition executions to the Adder, regardless of order.

Q: Synchronization

int main() {
pthread t tid[N]; int i, *ptr;
for (i=0; i<N; i++) {
ptr = Malloc(sizeof(int)); *ptr = i;
Pthread create(&tid[i],NULL,fn,ptr);
}
for (i=0; i<N; i++)
Pthread join(tid[i], NULL);
exit(9);
}

void *fn(void *vargp) {
int myid = *((int *)vargp);
Free(vargp);
printf("%d\n",myid);
return NULL;

Question: Are there any race
conditions in this code?

Answer: Nope. Careful use of
Malloc/Free prevents possible bugs.

Q: Synchronization

int main() {
pthread t tid[N]; int i, *ptr;
for (i=0; i<N; i++) {
ptr = Malloc(sizeof(int)); *ptr = i;
Pthread create(&tid[i],NULL,fn,ptr);

void *fn(void *vargp) {
int myid = *((int *)vargp);
Free(vargp);
process(myid);
return NULL;

} }
for (i=0; i<N; i++)
Pthread join(tid[i], NULL);
exit(9);
} Question: Outline an approach to avoid

race conditions that doesn't use
Malloc/Free. What are the
advantages/disadvantages of your
approach?

Q: Synchronization

int main() { void *fn(void *vargp) {
pthread t tid[N]; int i, *ptr; int myid = (int) vargp;
for (i=0; i<N; i++) { process(myid);
Pthread create(&tid[i],NULL,fn, (void*)i); return NULL;
} }

for (i=0@; i<N; i++)
Pthread join(tid[i], NULL);
exit(9);

} Answer: Simply pass in the int directly!
Pro: No added overhead due to
malloc/free.

Con: Assumes that pointer datatype is at
least bigger than size of int. May not be
true on all systems.

Q: Semaphores

int main() { void* thread(void* vargp)
sem t s, t; P(&s);
pthread t tidl, tid2; V(&s);
int vl = 1; int v2 = 2; P(&t);
Sem_init(&s, 0, 2); V(&t);
Sem_init(&t, 0, 2); printf("HERE: %d\n",
P(&s); P(&t); P(&t); *((int*)vargp));
Pthread create(&tidl, NULL, fn, &v1); return NULL;
Pthread create(&tid2, NULL, fn, &v2); }
while (1);

Question: What are the possible outputs of this program?
Explain your answer.

Q: Semaphores

int main() { void* thread(void* vargp)
sem t s, t; P(&s);
pthread t tidl, tid2; V(&s);
int vl = 1; int v2 = 2; P(&t);
Sem_init(&s, 0, 2); V(&t);
Sem_init(&t, 0, 2); printf("HERE: %d\n",
P(&s); P(&t); P(&t); *((int*)vargp));
Pthread create(&tidl, NULL, fn, &v1); return NULL;
Pthread create(&tid2, NULL, fn, &v2); }
while (1);

Answer: Nothing - this program will always deadlock!

Q: Semaphores

int main() { void* thread(void* vargp)
sem t s, t; P(&s);
pthread t tidl, tid2; V(&s);
int vl = 1; int v2 = 2; P(&t);
Sem_init(&s, 0, 2); V(&t);
Sem_init(&t, 0, 2); printf("HERE: %d\n",
P(&s); P(&t); *((int*)vargp));
Pthread create(&tidl, NULL, fn, &v1); return NULL;
Pthread create(&tid2, NULL, fn, &v2); }
while (1);

Question: Now, what are the possible outputs of the
program? Can deadlock still happen?

Q: Semaphores

int main() { void* thread(void* vargp)
sem t s, t; P(&s);
pthread t tidl, tid2; V(&s);
int vl = 1; int v2 = 2; P(&t);
Sem_init(&s, 0, 2); V(&t);
Sem_init(&t, 0, 2); printf("HERE: %d\n",
P(&s); P(&t); *((int*)vargp));
Pthread create(&tidl, NULL, fn, &v1); return NULL;
Pthread create(&tid2, NULL, fn, &v2); }
while (1);

Answer: Either "Here: 1" -> "Here: 2", or vice-versa. Dead
lock can't happen anymore.

Q: More semaphores

Thread 1: Thread 2: semt t; J/ N =1
P(&s) P(&1) sem t s; // N =1
P(&t) P(&s) -
do_work(); do_work();

V(&t) V(&s)
V(&s) V(&1);

Will this always deadlock? Sometimes deadlock? Never
deadlock? Show execution order for possible cases.

Q: More semaphores

Thread 1:
P(&s)
P(&t)
do_work();
V(&t)
V(&s)

Deadlock:
T1 T2
P(&s)
P(&t)
P(&s)
P(&t)
T1,T2 stuck!

Thread 2:
P(&t)
P(&s)
do_work();
V(&s)
V(&t);

sem_t t;
sem t s;

OK:
T1 T2
P(&s)
P(&t)
do_work()
V(&t)
V(&s)
P(&t)
P(&s)

Q: More semaphores

. Thread 2:
Thread 1. red sem t t; // N =1
P(&t) P(&1) sem t s; // N =1
P(&s) P(&s) -
do_work(); do_work();
V(&s) V(&s)
V(&t);

Will this always deadlock? Sometimes deadlock? Never
deadlock? Show execution order for possible cases.

Q: More semaphores

Thread 1: Thread 2: semt t: // N =
P(&t) P(&t) ¢ s _
sem t s; // N =
P(&s) P(&s)
do_work(); do_work(),
V(&s) V(&s)
V(&t); Deadlock:
| T1 T2
?1K' T2 P(&t)
P(&t) P(&s)
P(&s) do_work()
do_work() V(&s)
V(&s) P(&t)
v(&t) T2 is stuck!

P(&t)

Q: Volatility

Louis fell asleep during lecture, and woke up to Prof.
Eggert saying "we must use the volatile keyword to
avoid the compiler optimizing away access to this variable”.

Louis thinks: "That's silly. | want my code to be as fast as
possible, so | will never use volatile in my code."

Give a scenario in which Louis' code may produce incorrect
results/behavior.

Q: Volatility

int status; // asynch-modified by hardware
void fnl() {
status = 0; // reset status var
while (status == 0)
sleep(1l); // wait for non-zero status
handle status(status);

}

Since no other visible code can modify status, an aggressive compiler
may optimize fn1() to be:
status = 0;
while (true)
sleep(1);

However, an "outside" source, ie hardware, may modify status (say,
when the user presses a key).

Q: Canaries

8. Your friend implements his stack-protector as follows:

static int canary safe;
vold mygets (char *buff) {

int canary = rand();

canary safe = canary;

gets (buff) ;

1f (canary != canary safe) {

perror ("Smash detched!")

}

Is he safe?

A: Canaries

No! buf doesn't live in this stack frame, yet the
canary lives in the stack frame of mygets().
Thus, we can overwrite values in the *caller's”
stack frame with impunity, ie the caller's saved-

eip.

Lab 3 Q9 Review ("smashing" lab)

e Several approaches to exploit
o Assume NX-bit is disabled. Must bypass ASLR.
o Assume ASLR is disabled. Must bypass NX-bit.
o Assume neither is disabled.

Overwriting saved-eip

In all attacks, we will be overwriting the saved
return address to point to something *we*

control.
OXTffffff

I

Frame pointer
%ebp

Stack pointer
hesp

+8

+4

Argument 1

Return address

Saved %ebp

Saved registers,

local variables,
and
temporaries

L Caller’s frame

r Current frame

Overwrite this!

read_config() frame

Approach 1: Disable NX bit

With NX-bit disabled, stack memory is
executable. Inject x86 code to delete file.

x86 opcodes

(gdb) disas /r unlink
Dump of assembler code for function unlink:
=> Ox00a51d20 <+0>: 89 da mov %ebx, %edx
Ox00a51d22 <+2>: 8b 5c 24 04 mov Ox4 (%esp) , %ebx
Ox00a51d26 <+6>: b8 Oa 00 00 00 mov $0xa, %eax
Ox00a51d2b <+11>: 65 ff 15 10 00 00 00 call *%gs:
Ox10
Each x86 instruction is actually represented as hex bytes ("opcodes")
mov %ebx,%edx -> 0x89da
mov Ox4(%esp),%ebx -> Ox8b5c2404

Inject the opcodes to the stack.

Which opcodes to inject? Say | stepped into the "call *%gs:0x10" line in gdb:

=> 0x00110420
0x00110421
0x00110422
0x00110423
0x00110425

<+0>:
<+1>:
<+2>:
<+3>:
<+5>:

%ecx
%edx

51 push
52 push
55 push %ebp
89 e5 mov %esp,%ebp
of 34 sysenter

sysenter: Asks system to do a system call.
%eax: Which syscall to do (Oxa: unlink)
%ebx: First argument to syscall (ie char* filename)

(Or, can use "int
0x80" to make
system call.)

Approach 1: Steps

Two steps:

(1) Inject relevant x86 code to stack that
deletes "target.txt"

How? Write opcode bytes to config file!

(2) Compute the address of the "target.txt"
string.

Approach 1: Steps

(2) Compute the address of the "target.txt" string.

Hard way: guess the address of start of string. With
ASLR, there can ~2720 choices...ouch.

Easier way: use relative addressing!
leal $0x42(%esp), %ebx

Use gdb to determine exact relative offset from %esp to
your "target.txt" string.

Approach 1: NOP sled

Recall: We have to deal with ASLR. How to
guess start address of our x86 opcodes?

NOP-sled!

Ox90 90 90 90 90 ... 99 90 <REAL CODE>
\)

|

Guess *any” of these addresses, and win!

Attack won't always work, due to ASLR.
But - if you run it enough times, you'll get a win.

Approach 2: Disable ASLR

Can't inject x86 code onto stack, due to NX bit.

Instead: trick program into calling the unlink()
function!

Challenge: set up stack memory so that we
pass in correct args to unlink().

(1) Overwrite read_config()'s saved-eip to point to unlink.
(gdb) p/x &unlink
©x00a51d20

Note: This address may change if you change machines.

(2) Write address of "target.txt" to correct stack location for
unlink to use.

Where on stack?

(gdb) disas /r unlink

Dump of assembler code for function unlink:

=> 0x00a51d20 <+0>: 89 da mov %ebx, sedx
Ox00a51d22 <+2>: 8b 5c 24 04 mov Ox4 (%esp) , %ebx
Ox00a51d26 <+6>: b8 Oa 0O 00 V0 mov $0xa, %eax
0x00a51d2b <+11>: 65 ff 15 10 00 00 00 call *%LS :

0x10

Approach 3: Hard mode

Bypass NX-bit: Overwrite saved return-addr to &unlink
Bypass ASLR: Use a "NOP-sled", but for file names!

\./././././././././././././,tar‘get.txt

|

As long as we land on a'.’, we win!

Approach 3: Hard mode

Obstacle: Unix defines a max filename length of 4096
bytes.

S0, can't have too many repeated "./". Restricts our ability
to improve chances of guessing successfully.

Question: How to bypass this (annoying) max filename
length?

S S /target . Ext

