
CS 33 Week 7
Section 1G, Spring 2015

Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

● Lab 3 was due Wednesday ("smashing" lab)
○ May be on midterm 2!

● HW 5 out!
○ Due: May 29th (2 weeks from now)

● Midterm 2 on Tuesday!
○ Open book, open notes

Overview

● Concurrency
○ Process-level, multiplexing, thread-level

● Synchronization
○ Semaphores, Mutexes

● MT 2 Review

Motivation

● Why do we care about concurrency?

Primarily: Performance!

To take advantage of multiple cores, run code in parallel.

(We've seen this already in Instruction-Level Parallelism,
such as pipelining)

Scenario

● We have a problem that can be easily
broken up into separate "jobs".

● Goal: efficiently execute all jobs.

Concurrency: Processes

● Simple idea: create a separate process for
each job.

Processes
● A process is an executing program
● Linux: Use 'top' or 'ps' to view processes

[ericki@lnxsrv04 ~]$ ps -u ericki
 PID TTY TIME CMD
 7040 ? 00:00:00 sshd
 7042 pts/27 00:00:00 bash
 7116 pts/27 00:00:00 emacs
26762 ? 00:00:00 sshd
26764 pts/19 00:00:00 bash
26792 pts/19 00:00:00 ps

Each process has a Process ID
(PID).

Processes in C: fork()
● In C, can create a new process with fork()

$ gcc -o exfork exfork.c
$./exfork
In child process! pid was: 0
 [val=7] Exiting.
In parent process! (Child's pid is: 17042)
 [pid=42] Exiting.

Question: Can this
program output other
printout orders?

fork() properties

● For most part, child and parent processes
are separate

● Separate memory/address space, registers,
etc.

● Note: Child inherits parent's open file
descriptors!

$ gcc -o exfork2 exfork2.c
$./exfork2

In parent process! (Child's pid
is: 18063)
In child process! pid was: 0
[val=42] File contents: badwolf

[val=7] File contents: @

Huh?!

Question: What gets output?

Answer:

Child and parent *share*
file descriptor tables,
including seek locations!

Fix: Add a line that resets
pointer to beginning of file.

Processes: Pros/Cons

Pros
Simple to code. Processes can't interfere with each other (separate
memory/stack, etc.).
Utilizes *OS's* process scheduling system to maximize concurrency
(less work for us!)

Cons
Difficult for processes to communicate. Can still be done, but is
somewhat expensive.
Large overhead to spawning new processes - if each job is fairly
quick, then might simply be *faster* to do jobs in single process!

Multiplexing

● Idea: Only use *one* process to perform
multiple jobs.

● "Take turns" executing each job.

Multiplexing

● Typical ingredients:
○ select(), FD_SET, FD_ISSET, FD_CLEAR, etc.

Terminology: "blocking"
A function fn() is called "blocking" if it:
 Halts execution of the current thread while fn() is
running.

int main() {
 char* dataset = read_dataset(); // blocking
 float mn = compute_mean(dataset); // blocking
 printf(" Mean is: %f\n", mn);
 return 0;
}

Non-blocking
int main() {
 struct waitstruct* rval = read_dataset(); // non-blocking
 while (rval->status == 0)
 sleep(1);
 float mn = compute_mean(rval->dataset); // blocking
 printf(" Mean is: %f\n", mn);
 return 0;
}

Multiplexing: Pros/Cons

Pros:

Cons:

Shared memory, easy to communicate information between each job.

Only one process runs at a time! No performance gains from parallelism
here.
Your program must be structured in a particular way to use this approach.

Threading

● "Lightweight" method of concurrency
● Similar to processes:

○ Main thread spawns new threads
● Similar to multiplexing:

○ All threads share same memory space

Best of both worlds?

Note: gcc and threads

● To use pthreads in your C programs, add the
"-lpthread" option to gcc command:

$ gcc -o mythread mythread.c -lpthread

Note: goes at end!

Example: C
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
void* threadjob(void *arg) {
 int* val = ((int*) arg);
 *val = 7;
 printf(" Thread finished.\n");
 return NULL;
}
int main() {
 pthread_t pth;
 int myval = 42;
 printf(" (1) myval is: %d\n", myval);
 pthread_create(&pth, NULL, threadjob, &myval);
 pthread_join(pth, NULL);
 printf(" (2) myval is: %d\n", myval);
 return 0;
}

Question: What does program
output?

Answer:
 (1) myval is: 42
 Thread finished.
 (2) myval is: 7

Questions: Are there other
possible outputs?

Answer:
No! pthread_join()
enforces a consistency.

Example: C
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
void* threadjob(void *arg) {
 int* val = ((int*) arg);
 *val = 7;
 printf(" Thread finished.\n");
 return NULL;
}
int main() {
 pthread_t pth;
 int myval = 42;
 printf(" (1) myval is: %d\n", myval);
 pthread_create(&pth, NULL, threadjob, &myval);
 pthread_join(pth, NULL);
 printf(" (2) myval is: %d\n", myval);
 return 0;
}

Question: What are the possible
outputs of the program?

Answer:
 (1) myval is: 42
 Thread finished.
 (2) myval is: 7

Suppose we
removed that
pthread_join() call...

 (1) myval is: 42
 (2) myval is: 42
 Thread finished.

Threading: Pros/Cons

Pros:

Cons:

Shared memory, easy to communicate information between threads.
Much less overhead than processes.
Performance improves due to parallel execution!

Programmer must be careful about threads reading/writing to shared
memory. Concurrency bugs may occur if not careful.

Synchronization

● Threads allow a lightweight way to perform
concurrency with shared variables
○ "With great power, comes great responsibility…"

Must carefully govern access
to shared variables!

Concurrency bugs: Program *sometimes* works,
data is *sometimes* wrong, crashes *sometimes*...

Semaphores

● Popular synchronization primitive
● A counter

○ Semaphores are created with a fixed number of N
"tickets"

● If N=1, then is a binary semaphore
○ aka "mutex"

Operations

void P(sem_t* s)

Aka "sem_wait(s)". Decrements semaphore by 1 if possible. If not
possible, then wait until possible, ie another thread calls V().

void V(sem_t* s)

Aka "sem_post(s)", or "sem_wakeup(s)". Increments semaphore by 1.
If there are threads waiting to increment s, then this wakes up one of
the threads, allowing the thread to continue running.

"I want access!"

"I'm done!"

Example: Bounded Shared Buffer

● "Producer/Consumer" Scenario
● Application: Playing a video

○ Video decoder is constantly decoding frames and
placing them in a buffer (ie each frame is an image)

○ Video player is constantly taking images from the
buffer, and displaying them on the screen

● Guard access to buffer carefully

typedef struct {

 int *buf; /* Buffer array */

 int n; /* nb slots in buffer */

 int front; /* buf[(front+1)%n] is first item */

 int rear; /* buf[rear%n] is last item */

 sem_t mutex; sem_t slots; sem_t items;

} sbuf_t;

First attempt
void insert(sbuf_t* sp, int item) {

 P(&sp->mutex);

 sp->buf[(++sp->rear)%(sp->n)] = item;

 V(&sp->mutex);

}

int remove(sbuf_t *sp) {

 int x;

 P(&sp->mutex);

 x=sp->buf[(++sp->front)%(sp->n)];

 V(&sp->mutex);

 return x;

}

Question: What's wrong with this
implementation? Any
synchronization bugs?

Answer: Insert can overwrite existing
entries! No synchronization bugs though.

Second attempt
void insert(sbuf_t* sp, int item) {

 P(&sp->slots);

 P(&sp->mutex);

 sp->buf[(++sp->rear)%(sp->n)] = item;

 V(&sp->mutex);

 V(&sp->items);

}

int remove(sbuf_t *sp) {

 int x;

 P(&sp->items);

 P(&sp->mutex);

 x=sp->buf[(++sp->front)%(sp->n)];

 V(&sp->mutex);

 V(&sp->slots);

 return x;

}
Question: Anything wrong with this
implementation? Any synch bugs? Answer: Nope!

MT2 Review

● Floating Point
● Program Optimization
● (Basic) Processor Architecture
● Instruction Level Parallelism
● Concurrency
● Synchronization
● MT 1 topics

Q: Optimization
One compiler optimization makes use of the associative
property to break data dependencies:
acc=(acc*data[i])*data[i+1] acc=acc*(data[i]*data[i+1])vs

Would an optimization based on the commutative property
ever speed up a program? If so, give a scenario where a
speedup would occur due to the commutative property, and
explain why. If not, explain why not.

a + b = b + a ← Commutative Property

A: Optimization
Applying the commutative property will not speed up
execution.
The processor is already utilizing the commutative property.
When the processor is determining which micro-instructions
to run, it will perform operations out-of-order to maximize
performance. For instance, if an Adder functional unit is
idle, the processor will send any (independent) pending
addition executions to the Adder, regardless of order.

Q: Synchronization
int main() {
 pthread_t tid[N]; int i, *ptr;
 for (i=0; i<N; i++) {
 ptr = Malloc(sizeof(int)); *ptr = i;
 Pthread_create(&tid[i],NULL,fn,ptr);
 }
 for (i=0; i<N; i++)
 Pthread_join(tid[i], NULL);
 exit(0);
}

void *fn(void *vargp) {
 int myid = *((int *)vargp);
 Free(vargp);
 printf("%d\n",myid);
 return NULL;
}

Question: Are there any race
conditions in this code?

Answer: Nope. Careful use of
Malloc/Free prevents possible bugs.

Q: Synchronization
int main() {
 pthread_t tid[N]; int i, *ptr;
 for (i=0; i<N; i++) {
 ptr = Malloc(sizeof(int)); *ptr = i;
 Pthread_create(&tid[i],NULL,fn,ptr);
 }
 for (i=0; i<N; i++)
 Pthread_join(tid[i], NULL);
 exit(0);
}

void *fn(void *vargp) {
 int myid = *((int *)vargp);
 Free(vargp);
 process(myid);
 return NULL;
}

Question: Outline an approach to avoid
race conditions that doesn't use
Malloc/Free. What are the
advantages/disadvantages of your
approach?

Q: Synchronization
int main() {
 pthread_t tid[N]; int i, *ptr;
 for (i=0; i<N; i++) {
 Pthread_create(&tid[i],NULL,fn,(void*)i);
 }
 for (i=0; i<N; i++)
 Pthread_join(tid[i], NULL);
 exit(0);
}

void *fn(void *vargp) {
 int myid = (int) vargp;
 process(myid);
 return NULL;
}

Answer: Simply pass in the int directly!
Pro: No added overhead due to
malloc/free.
Con: Assumes that pointer datatype is at
least bigger than size of int. May not be
true on all systems.

Q: Semaphores
void* thread(void* vargp) {
 P(&s);
 V(&s);
 P(&t);
 V(&t);
 printf("HERE: %d\n",
 ((int)vargp));
 return NULL;
}

int main() {
 sem_t s, t;
 pthread_t tid1, tid2;
 int v1 = 1; int v2 = 2;
 Sem_init(&s, 0, 2);
 Sem_init(&t, 0, 2);
 P(&s); P(&t); P(&t);
 Pthread_create(&tid1, NULL, fn, &v1);
 Pthread_create(&tid2, NULL, fn, &v2);
 while (1);
}

Question: What are the possible outputs of this program?
Explain your answer.

Q: Semaphores
void* thread(void* vargp) {
 P(&s);
 V(&s);
 P(&t);
 V(&t);
 printf("HERE: %d\n",
 ((int)vargp));
 return NULL;
}

int main() {
 sem_t s, t;
 pthread_t tid1, tid2;
 int v1 = 1; int v2 = 2;
 Sem_init(&s, 0, 2);
 Sem_init(&t, 0, 2);
 P(&s); P(&t); P(&t);
 Pthread_create(&tid1, NULL, fn, &v1);
 Pthread_create(&tid2, NULL, fn, &v2);
 while (1);
}

Answer: Nothing - this program will always deadlock!

Q: Semaphores
void* thread(void* vargp) {
 P(&s);
 V(&s);
 P(&t);
 V(&t);
 printf("HERE: %d\n",
 ((int)vargp));
 return NULL;
}

int main() {
 sem_t s, t;
 pthread_t tid1, tid2;
 int v1 = 1; int v2 = 2;
 Sem_init(&s, 0, 2);
 Sem_init(&t, 0, 2);
 P(&s); P(&t);
 Pthread_create(&tid1, NULL, fn, &v1);
 Pthread_create(&tid2, NULL, fn, &v2);
 while (1);
}

Question: Now, what are the possible outputs of the
program? Can deadlock still happen?

Q: Semaphores
void* thread(void* vargp) {
 P(&s);
 V(&s);
 P(&t);
 V(&t);
 printf("HERE: %d\n",
 ((int)vargp));
 return NULL;
}

int main() {
 sem_t s, t;
 pthread_t tid1, tid2;
 int v1 = 1; int v2 = 2;
 Sem_init(&s, 0, 2);
 Sem_init(&t, 0, 2);
 P(&s); P(&t);
 Pthread_create(&tid1, NULL, fn, &v1);
 Pthread_create(&tid2, NULL, fn, &v2);
 while (1);
}

Answer: Either "Here: 1" -> "Here: 2", or vice-versa. Dead
lock can't happen anymore.

Q: More semaphores

Will this always deadlock? Sometimes deadlock? Never
deadlock? Show execution order for possible cases.

Thread 1:
 P(&s)
 P(&t)
 do_work();
 V(&t)
 V(&s)

Thread 2:
 P(&t)
 P(&s)
 do_work();
 V(&s)
 V(&t);

sem_t t; // N = 1
sem_t s; // N = 1

Q: More semaphores
Thread 1:
 P(&s)
 P(&t)
 do_work();
 V(&t)
 V(&s)

Thread 2:
 P(&t)
 P(&s)
 do_work();
 V(&s)
 V(&t);

sem_t t; // N = 1
sem_t s; // N = 1

Deadlock:
T1 T2
P(&s)
 P(&t)
 P(&s)
P(&t)
 T1,T2 stuck!

OK:
T1 T2
P(&s)
P(&t)
do_work()
V(&t)
V(&s)
 P(&t)
 P(&s)
 ...

Q: More semaphores

Will this always deadlock? Sometimes deadlock? Never
deadlock? Show execution order for possible cases.

Thread 1:
 P(&t)
 P(&s)
 do_work();
 V(&s)

Thread 2:
 P(&t)
 P(&s)
 do_work();
 V(&s)
 V(&t);

sem_t t; // N = 1
sem_t s; // N = 1

Q: More semaphores
Thread 1:
 P(&t)
 P(&s)
 do_work();
 V(&s)

Thread 2:
 P(&t)
 P(&s)
 do_work();
 V(&s)
 V(&t);

sem_t t; // N = 1
sem_t s; // N = 1

Deadlock:
T1 T2
P(&t)
P(&s)
do_work()
V(&s)
 P(&t)
 T2 is stuck!

OK:
T1 T2
 P(&t)
 P(&s)
 do_work()
 V(&s)
 V(&t)
P(&t)
...

Q: Volatility
Louis fell asleep during lecture, and woke up to Prof.
Eggert saying "we must use the volatile keyword to
avoid the compiler optimizing away access to this variable".
Louis thinks: "That's silly. I want my code to be as fast as
possible, so I will never use volatile in my code."
Give a scenario in which Louis' code may produce incorrect
results/behavior.

Q: Volatility
int status; // asynch-modified by hardware
void fn1() {
 status = 0; // reset status var
 while (status == 0)
 sleep(1); // wait for non-zero status
 handle_status(status);
}

Since no other visible code can modify status, an aggressive compiler
may optimize fn1() to be:
 status = 0;
 while (true)
 sleep(1);
 …
However, an "outside" source, ie hardware, may modify status (say,
when the user presses a key).

Q: Canaries
8. Your friend implements his stack-protector as follows:

static int canary_safe;
void mygets(char *buff) {

int canary = rand();
canary_safe = canary;
gets(buff);
if (canary != canary_safe) {

perror("Smash detched!")
}

}
Is he safe?

A: Canaries

No! buf doesn't live in this stack frame, yet the
canary lives in the stack frame of mygets().
Thus, we can overwrite values in the *caller's*
stack frame with impunity, ie the caller's saved-
eip.

Lab 3 Q9 Review ("smashing" lab)

● Several approaches to exploit
○ Assume NX-bit is disabled. Must bypass ASLR.
○ Assume ASLR is disabled. Must bypass NX-bit.
○ Assume neither is disabled.

Overwriting saved-eip

In all attacks, we will be overwriting the saved
return address to point to something *we*
control.

read_config() frame

Overwrite this!

Approach 1: Disable NX bit

With NX-bit disabled, stack memory is
executable. Inject x86 code to delete file.

x86 opcodes
(gdb) disas /r unlink
Dump of assembler code for function unlink:
=> 0x00a51d20 <+0>: 89 da mov %ebx,%edx
 0x00a51d22 <+2>: 8b 5c 24 04 mov 0x4(%esp),%ebx
 0x00a51d26 <+6>: b8 0a 00 00 00 mov $0xa,%eax
 0x00a51d2b <+11>: 65 ff 15 10 00 00 00 call *%gs:
0x10

Each x86 instruction is actually represented as hex bytes ("opcodes")
 mov %ebx,%edx -> 0x89da
 mov 0x4(%esp),%ebx -> 0x8b5c2404

Inject the opcodes to the stack.

=> 0x00110420 <+0>: 51 push %ecx
 0x00110421 <+1>: 52 push %edx
 0x00110422 <+2>: 55 push %ebp
 0x00110423 <+3>: 89 e5 mov %esp,%ebp
 0x00110425 <+5>: 0f 34 sysenter

Which opcodes to inject? Say I stepped into the "call *%gs:0x10" line in gdb:

sysenter: Asks system to do a system call.
%eax: Which syscall to do (0xa: unlink)
%ebx: First argument to syscall (ie char* filename)

(Or, can use "int
0x80" to make
system call.)

Approach 1: Steps

Two steps:
(1) Inject relevant x86 code to stack that
deletes "target.txt"
 How? Write opcode bytes to config file!
(2) Compute the address of the "target.txt"
string.

Approach 1: Steps
(2) Compute the address of the "target.txt" string.
 Hard way: guess the address of start of string. With
ASLR, there can ~2^20 choices...ouch.
 Easier way: use relative addressing!
 leal $0x42(%esp), %ebx

Use gdb to determine exact relative offset from %esp to
your "target.txt" string.

Approach 1: NOP sled

Recall: We have to deal with ASLR. How to
guess start address of our x86 opcodes?
NOP-sled!

0x90 90 90 90 90 … 90 90 <REAL CODE>

Guess *any* of these addresses, and win!

Attack won't always work, due to ASLR.
But - if you run it enough times, you'll get a win.

Approach 2: Disable ASLR

Can't inject x86 code onto stack, due to NX bit.
Instead: trick program into calling the unlink()
function!

Challenge: set up stack memory so that we
pass in correct args to unlink().

(1) Overwrite read_config()'s saved-eip to point to unlink.
 (gdb) p/x &unlink

 0x00a51d20

Note: This address may change if you change machines.

(2) Write address of "target.txt" to correct stack location for
unlink to use.
Where on stack?

(gdb) disas /r unlink
Dump of assembler code for function unlink:
=> 0x00a51d20 <+0>: 89 da mov %ebx,%edx
 0x00a51d22 <+2>: 8b 5c 24 04 mov 0x4(%esp),%ebx
 0x00a51d26 <+6>: b8 0a 00 00 00 mov $0xa,%eax
 0x00a51d2b <+11>: 65 ff 15 10 00 00 00 call *%gs:
0x10

Approach 3: Hard mode
Bypass NX-bit: Overwrite saved return-addr to &unlink
Bypass ASLR: Use a "NOP-sled", but for file names!

./././././././././././././target.txt

As long as we land on a '.', we win!

Approach 3: Hard mode
Obstacle: Unix defines a max filename length of 4096
bytes.
So, can't have too many repeated "./". Restricts our ability
to improve chances of guessing successfully.
Question: How to bypass this (annoying) max filename
length?

./././././././././././././target.txt

