CS 33 Week 8

Section 1G, Spring 2015
Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

e Midterm 2 scores out now

o Check grades on my.ucla.edu
o Mean: 60.7, Std: 15 Median: 61

e HW 5 due date updated
o Due: May 26th (Tuesday)

e Lab 4 released soon

o OpenMP Lab
o Tutorial on OpenMP

m hitp://openmp.org/mp-documents/omp-hands-on-SCO08.pdf

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Overview

e More concurrency
e File I/O
o MT?2

Example: sum

int result = 0;

void sum n(int n) { Suppose Louis

if (n == @) { Reasoner tries to
result = n; make this code
} else { thread safe...

sum_n(n-1);
result = result + n;

¥
¥

Example: fib

int result = 0;
sem t s; // sem init(&s,1);
void sum n(int n) {
if (n == 0) {
P(&s); result = n; V(&s);
} else {
P(&s);
sum_n(n-1);
result = result + n;
V(&s);

Question: Is there anything
wrong with this code?

Answer: Yes, deadlock! sum_n(5) calls
sum_n(4), but sum_n(4) can't acquire
mutex. sum_n(5) can't make progress
without sum_n(4) - thread is stuck.

Thread-safe functions

Definition: A function is thread-safe if functions correctly
during simultaneous execution by multiple threads. [nit:

[[stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code]

Alt: In computer programming, thread-safe describes a
program portion or routine that can be called from multiple
programming threads without unwanted interaction
between the threads. [nitp://wnatis.techtarget.com/definition/thread-safe]

http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://whatis.techtarget.com/definition/thread-safe

Thread-safe functions

Typically achieve thread-safety by mechanisms:
- Synchronization (ie semaphores/mutexes)
- Careful handling of shared data

"To write code that will run stably for
weeks takes extreme paranoia.”

(Not actually said by Nixon)

Reentrant Functions

A "stronger" version of thread-safe (in a sense).

Some conditions/characteristics of a reentrant
function:

- Does not use any shared data
- Any "state" is passed in as parameters

Reentrant Functions

Following example is from:

https://www-01.ibm.com/support/knowledgecenter/ssw aix 61/com.ibm.aix.
genproqgc/writing reentrant thread safe code.htm?cp=ssw aix 61%2F13-3-
12-18

Helpful reading on thread safety and reentrancy.

https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18

EX: strtoupper

/* non-reentrant function */
char *strtoupper(char *string) {
static char buffer[MAX STRING SIZE];
int index;
for (index = ©; string[index]; index++)
buffer[index] = toupper(string[index]);
buffer[index] = ©
return buffer;

. _ Answer: Nope! Two threads
Question: Is this threadsafe? running strtoupper() will write to

shared buffer.

EX: strtoupper

/* reentrant function (a poor solution) */
char *strtoupper(char *string) {
char *buffer;
int index;
/* error-checking should be performed! */
buffer = malloc(MAX_STRING SIZE);
for (index = ©; string[index]; index++)
buffer[index] = toupper(string[index]);
buffer[index] = ©
return buffer;

EX: strtoupper

/* reentrant function (a better solution) */
char *strtoupper r(char *in_str, char *out str) {
int index;
for (index = ©@; in_str[index]; index++)
out_str[index] = toupper(in_str[index]);
out _str[index] = ©
return out_str;

Ex: numseq()

/>I<>I<
* Returns the sequence of numbers: 2*(n-1), 1ie:
* 2, 4, 6, 8,
>I<>I</
int numseq() {
static unsigned int n = 0;
n=n+1,;
return 2*n;

}

Question: Is this reentrant? Threadsafe? Answer: Not reentrant.

Not threadsafe.

Ex: numseq()

/>I<>I<
* Returns the sequence of numbers: 2*(n-1), 1ie:
* 2, 4, 6, 8,

**/ . .
int numseq(int* n) { Answer: This is reentrant *if

*n = *n + 1; "int* n" does not point to a
return 2%(*n); shared variable.
} ’ Book calls this "implicitly"
reentrant.
Similarly, this is threadsafe as
long as "int* n" is not a
Question: Is this reentrant? Threadsafe? variable shared among

threads.

Reentrancy vs Thread Safety

Question: Are threadsafe functions always reentrant?

void f() {
mutex_acquire();
// suppose signhal handler gets invoked here!
do_important_stuff();
mutex_release();

¥

Answer: Nope! Suppose function f() is used as a signal handler. Suppose
we are executing f(), and acquire the mutex. Then, suppose signal handler
gets invoked again, and we invoke f() again. The signal handler will get
stuck trying to acquire the mutex!

Reentrancy vs Thread Safety

Question: Are reentrant functions always threadsafe?

Answer: According to your textbook, yes. This is using the
definition that reentrant functions never access shared data.

For fun, let's consider a slightly more nuanced definition of reentrant
functions.

An Alternate Definition of Reentrant

History: Reentrancy is an idea that originated in single-
threaded environments.

People wanted functions that worked correctly even if a
hardware interrupt happened during a function execution.

Thus, reentrancy and thread-safety are *actually* two
separate ideas.

Reentrancy vs Thread Safety

int t;

void swap(int *x, int *y) {
t = *x; This is not reentrant, not
X = *y; threadsafe.
*y — t;

}

Exercise: Show why this is not reentrant from
a hardware-interrupt perspective.

Reentrancy vs Thread Safety

A reentrant version of swap:

int t;

void swap(int *x, int *y) {
int s;
s = t; // save global variable Suppose we get interrupted
t = *x; here, and another swap() call

4— is made to completion. Since

*x = *y; the second swap() call is
*y = t; careful to restore the value of
t = s; // restore global variable t, the first swap() call will still

} produce the correct output.

Reentrancy vs Thread Safety

A reentrant version of swap: Question: Is this threadsafe?

int t;

void swap(int *x, int *y) {
int s; Answer: Nope! Say two threads
s = t; // save global variable T1, T2 call swap() concurrently.
t = *x; Say T1 finished "t = *x", then we

switch to T2.

*x = *y; Say T2 does "t = *x", then we
¥y = t; switch back to T1.

t = s; // restore global variable |1 Willbe using the wrong value
} of t!

Thoughts from the peanut gallery

The previous reentrancy example uses a definition of
reentrancy that the textbook doesn't seem to use.

Perhaps the textbook is offering a simplified view of
reentrancy?

File I/O

Do read the textbook (Chapter 10).

Tip: Actually write some C programs that read/write to files,
using stdio.h function: fopen, fclose, fputc/fgetc,
fread/fwrite.

Exercise: read()

Answer: read() returns a ssize t, ie
a *signed® int, since it may return -1.

char buf[10];
[16] Thus, if read() returned -1, then the

size t n;
int i; size_t would interpret -1 as a very
while (1) { big number - oops!

n = read(f, buf, 10);
printf(" Read in %d bytes!\n", n);
for (i=0; i<n; ++i) {
printf(" [byte %d/%d]: %d\n",i,n,buf[i]);
}
}

Question: read() returns 0 if EOF, -1 if error, or # bytes read. What is
the bug in this code?

POSIX vs C library

POSIX library (ie <unistd.h>) provides low-level functions
that allow user programs to talk to the operating system.
Unix, MacOSX use this interface ("POSIX compliant").

Includes I/O functions like open(),close(),read(),write().
Also: fork().

POSIX vs C library

In theory, can write C programs to do all file 1/O using only
POSIX functions.

But, would be kind of annoying.

Instead, C library <stdio.h> includes a bunch of
convenience functions, such as: fprintf()/fscanf(), fgets()
/fputs(), fopen()/fclose(), etc:

http://www.cplusplus.com/reference/cstdio/

In practice, typically use <stdio.h> for your programs.

http://www.cplusplus.com/reference/cstdio/

POSIX vs C library

<stdio.h> is built on top of <unistd.h>
functions.

Quick Demo: C File I/O Examples

(1) Write C program to display text file contents
v1: Use only POSIX functions
v2: Use C library

(2) Write a C chatter bot.

Midterm 2

Let's go over each question.

(Can't release this part online, sorry!)

Remind class about OpenMP tutorial

