
CS 33 Week 8
Section 1G, Spring 2015

Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

● Midterm 2 scores out now
○ Check grades on my.ucla.edu
○ Mean: 60.7, Std: 15 Median: 61

● HW 5 due date updated
○ Due: May 26th (Tuesday)

● Lab 4 released soon
○ OpenMP Lab
○ Tutorial on OpenMP

■ http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Overview

● More concurrency
● File I/O
● MT 2

Example: sum
int result = 0;
void sum_n(int n) {
 if (n == 0) {
 result = n;
 } else {
 sum_n(n-1);
 result = result + n;
 }
}

Suppose Louis
Reasoner tries to
make this code
thread safe...

Example: fib
int result = 0;
sem_t s; // sem_init(&s,1);
void sum_n(int n) {
 if (n == 0) {
 P(&s); result = n; V(&s);
 } else {
 P(&s);
 sum_n(n-1);
 result = result + n;
 V(&s);
 }
}

Question: Is there anything
wrong with this code?

Answer: Yes, deadlock! sum_n(5) calls
sum_n(4), but sum_n(4) can't acquire
mutex. sum_n(5) can't make progress
without sum_n(4) - thread is stuck.

Thread-safe functions
Definition: A function is thread-safe if functions correctly
during simultaneous execution by multiple threads. [http:
//stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code]

Alt: In computer programming, thread-safe describes a
program portion or routine that can be called from multiple
programming threads without unwanted interaction
between the threads. [http://whatis.techtarget.com/definition/thread-safe]

http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://stackoverflow.com/questions/261683/what-is-meant-by-thread-safe-code
http://whatis.techtarget.com/definition/thread-safe

Thread-safe functions
Typically achieve thread-safety by mechanisms:
- Synchronization (ie semaphores/mutexes)
- Careful handling of shared data

"To write code that will run stably for
weeks takes extreme paranoia."

(Not actually said by Nixon)

Reentrant Functions

A "stronger" version of thread-safe (in a sense).
Some conditions/characteristics of a reentrant
function:
- Does not use any shared data
- Any "state" is passed in as parameters

Reentrant Functions
Following example is from:
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.
genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-
12-18

Helpful reading on thread safety and reentrancy.

https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18
https://www-01.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.genprogc/writing_reentrant_thread_safe_code.htm?cp=ssw_aix_61%2F13-3-12-18

Ex: strtoupper
/* non-reentrant function */
char *strtoupper(char *string) {
 static char buffer[MAX_STRING_SIZE];
 int index;
 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0
 return buffer;
}

Question: Is this threadsafe?
Answer: Nope! Two threads
running strtoupper() will write to
shared buffer.

Ex: strtoupper
/* reentrant function (a poor solution) */
char *strtoupper(char *string) {
 char *buffer;
 int index;
 /* error-checking should be performed! */
 buffer = malloc(MAX_STRING_SIZE);
 for (index = 0; string[index]; index++)
 buffer[index] = toupper(string[index]);
 buffer[index] = 0
 return buffer;
}

Ex: strtoupper
/* reentrant function (a better solution) */
char *strtoupper_r(char *in_str, char *out_str) {
 int index;
 for (index = 0; in_str[index]; index++)
 out_str[index] = toupper(in_str[index]);
 out_str[index] = 0
 return out_str;
}

Ex: numseq()
/**
 * Returns the sequence of numbers: 2*(n-1), ie:
 * 2, 4, 6, 8, ...
 **/
int numseq() {
 static unsigned int n = 0;
 n = n + 1;
 return 2*n;
}

Question: Is this reentrant? Threadsafe? Answer: Not reentrant.
Not threadsafe.

Ex: numseq()
/**
 * Returns the sequence of numbers: 2*(n-1), ie:
 * 2, 4, 6, 8, ...
 **/
int numseq(int* n) {
 *n = *n + 1;
 return 2*(*n);
}

Question: Is this reentrant? Threadsafe?

Answer: This is reentrant *if*
"int* n" does not point to a
shared variable.
Book calls this "implicitly"
reentrant.
Similarly, this is threadsafe as
long as "int* n" is not a
variable shared among
threads.

Reentrancy vs Thread Safety
Question: Are threadsafe functions always reentrant?

void f() {
 mutex_acquire();
 // suppose signal handler gets invoked here!
 do_important_stuff();
 mutex_release();
}

Answer: Nope! Suppose function f() is used as a signal handler. Suppose
we are executing f(), and acquire the mutex. Then, suppose signal handler
gets invoked again, and we invoke f() again. The signal handler will get
stuck trying to acquire the mutex!

Reentrancy vs Thread Safety
Question: Are reentrant functions always threadsafe?

Answer: According to your textbook, yes. This is using the
definition that reentrant functions never access shared data.

For fun, let's consider a slightly more nuanced definition of reentrant
functions.

An Alternate Definition of Reentrant
History: Reentrancy is an idea that originated in single-
threaded environments.
People wanted functions that worked correctly even if a
hardware interrupt happened during a function execution.

Thus, reentrancy and thread-safety are *actually* two
separate ideas.

Reentrancy vs Thread Safety

int t;
void swap(int *x, int *y) {
 t = *x;
 *x = *y;
 *y = t;
}

This is not reentrant, not
threadsafe.

Exercise: Show why this is not reentrant from
a hardware-interrupt perspective.

Reentrancy vs Thread Safety

int t;
void swap(int *x, int *y) {
 int s;
 s = t; // save global variable
 t = *x;

 *x = *y;
 *y = t;
 t = s; // restore global variable
}

Suppose we get interrupted
here, and another swap() call
is made to completion. Since
the second swap() call is
careful to restore the value of
t, the first swap() call will still
produce the correct output.

A reentrant version of swap:

Reentrancy vs Thread Safety

int t;
void swap(int *x, int *y) {
 int s;
 s = t; // save global variable
 t = *x;

 *x = *y;
 *y = t;
 t = s; // restore global variable
}

A reentrant version of swap: Question: Is this threadsafe?

Answer: Nope! Say two threads
T1, T2 call swap() concurrently.
Say T1 finished "t = *x", then we
switch to T2.
Say T2 does "t = *x", then we
switch back to T1.
T1 will be using the wrong value
of t!

Thoughts from the peanut gallery
The previous reentrancy example uses a definition of
reentrancy that the textbook doesn't seem to use.

Perhaps the textbook is offering a simplified view of
reentrancy?

File I/O
Do read the textbook (Chapter 10).

Tip: Actually write some C programs that read/write to files,
using stdio.h function: fopen, fclose, fputc/fgetc,
fread/fwrite.

Exercise: read()
char buf[10];
size_t n;
int i;
while (1) {
 n = read(f, buf, 10);
 printf(" Read in %d bytes!\n", n);
 for (i=0; i<n; ++i) {
 printf(" [byte %d/%d]: %d\n",i,n,buf[i]);
 }
}

Question: read() returns 0 if EOF, -1 if error, or # bytes read. What is
the bug in this code?

Answer: read() returns a ssize_t, ie
a *signed* int, since it may return -1.
Thus, if read() returned -1, then the
size_t would interpret -1 as a very
big number - oops!

POSIX vs C library
POSIX library (ie <unistd.h>) provides low-level functions
that allow user programs to talk to the operating system.
Unix, MacOSX use this interface ("POSIX compliant").
Includes I/O functions like open(),close(),read(),write().
Also: fork().

POSIX vs C library
In theory, can write C programs to do all file I/O using only
POSIX functions.
But, would be kind of annoying.
Instead, C library <stdio.h> includes a bunch of
convenience functions, such as: fprintf()/fscanf(), fgets()
/fputs(), fopen()/fclose(), etc:
 http://www.cplusplus.com/reference/cstdio/

In practice, typically use <stdio.h> for your programs.

http://www.cplusplus.com/reference/cstdio/

POSIX vs C library

<stdio.h> is built on top of <unistd.h>
functions.

Quick Demo: C File I/O Examples

(1) Write C program to display text file contents
 v1: Use only POSIX functions
 v2: Use C library
(2) Write a C chatter bot.

Midterm 2
Let's go over each question.

(Can't release this part online, sorry!)

Remind class about OpenMP tutorial

