CS 33 Week 9

Section 1G, Spring 2015
Prof. Eggert (TA: Eric Kim)
v1.0

Announcements

e Lab 4 due next week
o June 3rd (Wednesday)

e Final Exam in 2 weeks!

o Final Examination Code: 15 - Thursday, June

11, 2015, 8:00am-11:00am
o Location: Ackerman Grand Ballroom
o Cumulative (emphasis on post-MT2)

Overview

e Virtual Memory
e Linking

Virtual Memory

Tip: Read the textbook! (Chapter 9)
Pretty detail-oriented section.

Google is your friend.

Virtual Memory: Motivation

Multiple user programs need to use RAM.
Problem: Only one DRAM unit on machine.

Solution: Use Virtual Memory to let programs think they
have access to entire DRAM.

Virtual Memory: High Level

A program's memory is an array with 2*N elements that
resides on disk.

Partition memory into equal-sized chunks: "pages”

Use DRAM as cache for program's memory (ie a cache for
disk).

Virtual Address Spaces

Each user process has its own virtual address space. The

virtual addresses from P1 do not interfere with the vaddrs
of P2.

Ex: Suppose P1,P2 both write to vaddr Ox7fffabcd. In

general, P1 and P2 will write to different *physical*
locations.

Virtual Address Spaces

Note: There are ways for different processes to *share*

pages, ie for two processes to write to the same physical
memory location. (mmap)

Physical vs Virtual

Physical Address Space: Refers to addressable bytes on
the DRAM installed in the machine.

Virtual Address Space: Refers to addressable bytes that
may reside in DRAM or on disk. The address space that
each program owns.

Page Tables

Maps vaddr to actual location, ie either DRAM or disk.

Physical page Physical memory
number or (DRAM)
_ disk address VP 1 PP O
Valid
PTEO[O[nul %’ VP2
Page Table Entry (PTE): 1 — T
/
Rows of page table. ’ .
1 —=.
S Virtual memory
8 m,{” = (disk)
PTE 7.1 L e S
In practice, PTE's include Memory resident™~., " L VP2
.] page table | VP 3 |
more information (such as (DRAM) —vpa |
NX-bit, permissions, etc.) T vee |
Figure 9.4 | VP 7 |

Page table.

Page Tables

Resides in DRAM.

The special CR3 register stores the start location of the
page table. (register lives in MMU)

Each page stores many addresses. (Ex: 1 page stores 4
KiB = (4*2*10) addresses)

Page Tables

Can nest page tables too:

Virtual address

n—1 p—1
¢ VPN 1 ¢ VPN2 ¢ VPN K VPO
————
Level 1 Level 2 Level k
page table | page table page table
— .—J
> =
- PPN }~‘
Figure 9.18 L : p_1

Address translation with

PPN

PPO

a k-level page table.

Physical address

Using Page Tables

Page table
base register

Virtual address

1

e
e Virtual page number (VPN)

(PTBR)

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

If valid = 0
then page
not in memory
(page fault)

m—1

p p—1 0
Virtual page offsetu(VPO)
Page
table
p p—1 0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Figure 9.12 Address translation with a page table.

(1) Split vaddr into VPN
and VPO
(2) Use VPN as index into
page table.
If not valid: Page fault!
Else:
(3) Grab PPN from table,
and construct paddr as:
paddr = PPN | VPO

\

concatenate

Page Fault

(1) Split vaddr into VPN
and VPO
(2) Use VPN as index into
page table.
If not valid: Page fault!
Else:
(3) Grab PPN from table,
and construct paddr as:
paddr = PPN | VPO

\

concatenate

If the PTE for a vaddr is invalid, then the
physical page PPN is not loaded in
DRAM.

Must ask OS to:
(1) Evict a victim page from DRAM

(2) Load the physical page PPN to
DRAM

(3) Re-run the instruction that generated
the page fault.

Figure: Page Hit
CPU chip @

VA: vaddr E | PTEA
PA: paddr 5 P g
PTE: Page Table | @ i PTE
Entry ' | Processor [MMU @ Cache/
PTEA: Page Table | . VA 5 memory
Entry Address : 5 PA

R i@

(a) Page hit

Figure: Page Fault

@

Exception ,
VA: vaddr Page fault elxcl:eptlon handler
PA: paddr |
PTE: Page Table PR e ; P%
Entry . : 5TE Victim page
PTEA: Page Table [Processor ® mmu | | (® | caches ® Disk
Entry Address ég Memory |\ ew page

(b) Page fault

Figure 9.13 Operational view of page hits and page faults. VA: virtual address. PTEA:
page table entry address. PTE: page table entry. PA: physical address.

Paging: Disk I/O

Suppose process P1 gets a page fault. Swapping in the new
page (and swapping out victim page) is fairly expensive, due to
disk I/O.

So, OS will likely run other processes while doing the page

swaps.
Answer: Thrashing! Suppose the first page fault evicted a

Question: Suppose page that P2 needed. When P2 runs, it will issue its own

P1,P2 are running page fault. Suppose the second page fault evicts a page

processes. Can You that P1 needs. When P1 resumes, it will issue another page
think of a scenario fault.

where aprogram P1 - Ringe and repeat...
gets "stuck"?

MMU: Memory Management Unit

MMU is a special chip in the CPU that performs
address translation.

Contains hardware to do vaddr->paddr
mapping.

Goal: MMU must be as fast as possible.

TLB: Cache for MMU

Short for: "Translation Lookaside Buffer"
Caches mappings: VPN -> PPN

Typically has high associativity (ie 4-way set associative).

TLB: Hit

CPU chip
TLB

VA: vaddr s 5

PA: paddr @ven| |PTEI®)

PTE: Page Table ’ ’

Entry § §

PTEA: Page Table Processor ® Trans- @ Cache/
Entry Address ; VA lation |i PA | memory

@ Data

(a) TLB hit

TLB: Miss

VA: vaddr

PA: paddr

PTE: Page Table
Entry

PTEA: Page Table
Entry Address

CPU chip

Processor

Trans- }+——
lation PA
Data |/

(b) TLB miss

Cache/
memory

Figure 9.16 Operational view of a TLB hit and miss.

TLB: Usage

Internally: Split up VPN into "tag" and "set index" bits
(TLBT, TLBI). Use tag, set-index for cache operation.

Figure 9.15

Components of a virtual
address that are used to
access the TLB.

n—1 pt+t p+t-1 pp—1 0
TLB tag (TLBT) | TLB index (TLBI)| VPO
VPN

vaddr

Tour: Translate Virtual Address

(Based off of example in book: Chapter 9.6.4, pg. 794)

Tour: Translate Virtual Address

Virtual addresses are 14 bits wide

Physical addresses are 12 bits wide

Page table is single-level, with page size of 64 bytes
TLB is four-way set associative w/ 16 total entries.

Question: Answer: Since page Question: Answer: Since
How many size is 64 bytes, we How many bits VPO=PPOQO, need 6
bits are in need log2(64) = 6 bits are in PPO? bits for PPO.
VPO? VPN? for VPO. PPN? Need (12-6)=6 bits
VPNis(14-6)=8 for PPN.

bits.

Tour: Translate Virtual Address

Virtual addresses are 14 bits wide

Physical addresses are 12 bits wide

Page table is single-level, with page size of 64 bytes
TLB is four-way set associative w/ 16 total entries.

Virtual 13 12 11 10 9 8 7 6 5 4 3 2 1 0
address | | [[[[T [[T [T T
< VPN > VPO >
(Virtual page number) (Virtual page offset)
Phvsical 11 10 9 8 7 6 5 4 3 2 1 0
address Lt rrrrrr I
< PPN > PPO
(Physical page number) (Physical page offset)

Figure 9.19 Addressing for small memory system. Assume 14-bit virtual addresses
(n = 14), 12-bit physical addresses (m = 12), and 64-byte pages (P = 64).

Tour: Translate Virtual Address

Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes

TLB is four-way set associative w/ 16 total entries.

Question: How many
TLB set-index bits do |

need?

How many TLB tag bits? Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
oflo3 | - | o]oo|ob| 1 |00 | - 0 [o7 [02 | 1

Answer: Since there are four 1103 |20 | 1]o2| - | 0]o4| -] 0JOA|-]|O
2102 | - | o |08 | - o |06 | - 0 [o3 | - 0

sets, we need log2(4) = 2 P T o Tos Tos T 1 Tor Toe T 1 T T T

Set-lndeX b|tS. (a) TLB: Four sets, 16 entries, four-way set associative

There are (8-2)=6 tag bits.

Tour: Translate Virtual Address

Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes

TLB is four-way set associative w/ 16 total entries.

+—— TLBT———— <« TLBl—>

QueStlon HOW many 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLB set-index bits do | adios L 1 T T T T T T T T T T T
need? +———— VPN > < VPO >
How many TLB tag b|ts'? Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
ofos [- [ofJoo oo | 1 oo [-] ooz [o2] 1
Answer: Since there are four T R e
sets, we need log2(4) = 2 slor | - [o|os|oo| 1]oafaa]| 1 o] -1o

Set-lndeX b|tS. (a) TLB: Four sets, 16 entries, four-way set associative

There are (8-2)=6 tag bits.

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr ©x03d4. List
the steps. What is the result of translating vaddr?

VPN PPN Valid VPN PPN Valid
« TLBT >« TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 | 28 1 08 | 13 1
Virtual
address | | ’ ‘ | | | | ’ l | ’ ‘ | 01 — 0 09 17 1
* VPN > VPO > 02 | 33 1 0A | 09 1
Set Tag PPN Valid Tag PPN Vald Tag PPN Valid Tag PPN Valid 03 | 02 1 oB| - 0
of o3 | - o [oog [oD| 1 [o00 | - o [o7 | o2 1 04 | — 0 oc| - 0
1 03 2D 1 02 - 0 04 - 0 0A - 0 05 16 1 oD 2D 1
2| 02 | - o | o8 | - o | o6 | - o |03 | - 0 06 | — 0 o [11 "
3| o7 | - o o3 |oD| 1 |o0A | 34 1 o2 | - 0
07 — 0 OF oD 1

(a) TLB: Four sets, 16 entries, four-way set associative

(b) Page table: Only the first 16 PTEs are shown

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr 0x03d4. List
the steps. What is the result of translating vaddr?

Answer: TLB -> Hit, PPN=0x0D.
paddr is: 0x354.

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr @x023A. List
the steps. What is the result of translating vaddr?

VPN PPN Valid VPN PPN Valid
« TLBT >« TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 | 28 1 08 | 13 1
Virtual
address | | ’ ‘ | | | | ’ l | ’ ‘ | 01 — 0 09 17 1
* VPN > VPO > 02 | 33 1 0A | 09 1
Set Tag PPN Valid Tag PPN Vald Tag PPN Valid Tag PPN Valid 03 | 02 1 oB| - 0
of o3 | - o [oog [oD| 1 [o00 | - o [o7 | o2 1 04 | — 0 oc| - 0
1 03 2D 1 02 - 0 04 - 0 0A - 0 05 16 1 oD 2D 1
2| 02 | - o | o8 | - o | o6 | - o |03 | - 0 06 | — 0 o [11 "
3| o7 | - o o3 |oD| 1 |o0A | 34 1 o2 | - 0
07 — 0 OF oD 1

(a) TLB: Four sets, 16 entries, four-way set associative

(b) Page table: Only the first 16 PTEs are shown

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr 0x023A. List
the steps. What is the result of translating vaddr?

Answer: TLB miss, PageTable(0x08) -> Hit, PPN=0x13.
paddr = Ox4FA.

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr @x005F. List
the steps. What is the result of translating vaddr?

VPN PPN Valid VPN PPN Valid
« TLBT >« TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 | 28 1 08 | 13 1
Virtual
address | | ’ ‘ | | | | ’ l | ’ ‘ | 01 — 0 09 17 1
* VPN > VPO > 02 | 33 1 0A | 09 1
Set Tag PPN Valid Tag PPN Vald Tag PPN Valid Tag PPN Valid 03 | 02 1 oB| - 0
of o3 | - o [oog [oD| 1 [o00 | - o [o7 | o2 1 04 | — 0 oc| - 0
1 03 2D 1 02 - 0 04 - 0 0A - 0 05 16 1 oD 2D 1
2| 02 | - o | o8 | - o | o6 | - o |03 | - 0 06 | — 0 o [11 "
3| o7 | - o o3 |oD| 1 |o0A | 34 1 o2 | - 0
07 — 0 OF oD 1

(a) TLB: Four sets, 16 entries, four-way set associative

(b) Page table: Only the first 16 PTEs are shown

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr 0x005F. List
the steps. What is the result of translating vaddr?

Answer: TLB -> Miss! PageTable(0x01) -> Miss, pagefault!

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr Ox003A. List
the steps. What is the result of translating vaddr?

VPN PPN Valid VPN PPN Valid
« TLBT >« TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 | 28 1 08 | 13 1
Virtual
address | | ’ ‘ | | | | ’ l | ’ ‘ | 01 — 0 09 17 1
* VPN > VPO > 02 | 33 1 0A | 09 1
Set Tag PPN Valid Tag PPN Vald Tag PPN Valid Tag PPN Valid 03 | 02 1 oB| - 0
of o3 | - o [oog [oD| 1 [o00 | - o [o7 | o2 1 04 | — 0 oc| - 0
1 03 2D 1 02 - 0 04 - 0 0A - 0 05 16 1 oD 2D 1
2| 02 | - o | o8 | - o | o6 | - o |03 | - 0 06 | — 0 o [11 "
3| o7 | - o o3 |oD| 1 |o0A | 34 1 o2 | - 0
07 — 0 OF oD 1

(a) TLB: Four sets, 16 entries, four-way set associative

(b) Page table: Only the first 16 PTEs are shown

Tour: Translate Virtual Address

Exercise: Suppose CPU requests to load a value from vaddr 0x003A. List
the steps. What is the result of translating vaddr?

Answer: TLB -> Miss (Invalid). PageTable(0x00) -> Hit, PPN=0x28.
paddr = OxA3A

TLB Invalidation

TLB is just another cache.

Question: Under what
scenarios do we have to
invalidate a cache
entry?

Answer:

(1) We do a context switch (P1's vaddr Ox7fffabcd !=
P2's vaddr Ox7fffabcd).

How to work around this?

(2) When a page fault occurs, and the evicted page
resides in the TLB. Since the evicted page no longer
is in memory, we must invalidate TLB entry.

(3) Cache replacement. When there is a TLB miss,
and a page table hit, then we will replace an older
TLB entry with the new mapping.

Context Switch

Recall: A CPU can only execute instructions from one process at
a time.

To support multiprocessing, CPU's will periodically switch
processes to ensure that each process gets execution time
“fairly". Controlled by OS's process scheduler.

Switching from one process to another is called a context
switch.

Context Switch

Question: Upon a process context switch, what elements of the
CPU need to be saved/restored/modified?

Answer:

Need to save/restore: registers, program counter, memory.
Need to invalidate/flush: TLB.

Why do | not need to invalidate Caches (L1,L2,etc.)?
Caches use physical addresses, not virtual addresses! P2 will never
use the physical address of P1, since addr spaces of P1, P2 are distinct.

TLB: Context Switch

Question: How to avoid having to flush TLB each time
CPU performs a process context switch? Pros/Cons?

Answer: Can add a process-ID tag (PID) to each TLB cache entry.
Upon a context switch, don't have to invalidate anything! Must
modify MMU to also check current PID.

Pros: Fewer TLB misses due to process context switches.

Cons: Makes MMU hardware more complex/expensive.

Nested Page Tables

Suppose we have a single-level page table.
32-bit address space, 4 KiB pages, 4-byte PTE.

Question: How large would
the page table need to be to
address entire address
space (in MiB)?

Answer:

bits PPO = log2(4*2”*10) = log2
(2M2) = 12.

Since 32-bit addrspace, there are (32-
12)=20 bits in PPN.

Thus, there are 220 entries in page
table.

Size = (4 bytes) * (2420) = 4 MiB.

Nested Page Tables

Suppose we have a single-level page table.
64-bit address space, 4 MiB pages, 9-byte PTE.

Question: How large would Answer:
the page table need to be to # bits of PPO = log2(4+2"20) = 22.
address entire address # bits _PPN = (64-22) = 42.
space? # entries = 2742
Size = (9 bytes) * (2°42) = 36 TiB =
36,864 GiB

Ouch! Not feasible to store entire page table in memory!

Nested Page Tables

Solution: Instead of a single flat page table, use nested
page tables.

Each PTE points to the start of another page table.
Final page table contains actual PPN's.
Location of first page table is given by register CR3.

Level 1 Level 2 Virtual
page table page tables memory
/ 0
PTE O PTEO VP 1023
PTE 1 VP 1024
PTE 2 (null) PTE 1023 T
PTE 3 (null) VP 2047
PTE 4 (null) PTEO
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap
PTE 8 >
1023 null
(1 K— 9) PTEs
null PTEs PTE 1023 1023
unallocated
pages

VP 9215

Example: Two-level Page Table

2K allocated VM pages
for code and data

J .

~ 6K unallocated VM pages

u

1023 unallocated pages

} 1 allocated VM page
for the stack

Figure 9.17 A two-level page table hierarchy. Notice that addresses increase from top

to bottom.

Example: Two-level Page Table

Idea: If a program
only uses a tiny part
of its address space,
then most of the
PTE's at L1 will be
null.

Thus, no need to
create PTE's for
unused addresses!

Level 1 Level 2 Virtual
page table page tables memory
05
/ vPo
PTE O PTE 0 VP 1023 2K allocated VM pages
PTE 1 S VP 1024 for code and data
PTE 2 (null) PTE 1023 —
PTE 3 (null) VP 2047
PTE 4 (null) PTE O
PTE 5 (null) 600
PTE 6 (null) PTE 1023
PTE 7 (null) Gap ~ 6K unallocated VM pages
PTE 8 >
1023 null
(1K=9) PTEs
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 | } 1 allocated VM page

for the stack

Figure 9.17 A two-level page table hierarchy. Notice that addresses increase from top
to bottom.

Nested Page Tables

Each page of L1 page table references large chunks of
address space (ie 4 MiB).

Pages of L2 page table reference smaller chunks (ie 4 KiB).
Similarly for L3, L4, etc.

Nested Page Tables

Only need to keep L1 page table in main memory at all
times!

Other levels (L2,L3,L4,etc.) can be paged in/out as
necessary (ie stored on disk/restored to DRAM).

Nested Page Tables

Suppose page table has k-levels. Partition VPN into k-sets. Use
each VPN i as the index into the i-th

9

9

9

9

page

table.

2

vwN1 | ven2 | veN3 | vPN4] VPO | Virtual address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory 40 directory 40 directory 40 table
CR3 £
Physical
address
fL1 PT ;
© LAGere W LA zere H LAsere H LAapTE | Offset into
12 physical and
virtual page
512 GB 1GB 2MB 4 KB Physical
region region region region address
per entry per entry per entry per entry of page
40
40 12
I PPN | PPO | Physical address

Figure 9.25 Core i7 page table translation. Legend: PT: page table, PTE: page table entry, VPN: virtual page
number, VPO: virtual page offset, PPN: physical page number, PPO: physical page offset. The Linux names for
the four levels of page tables are also shown.

9 9 9 9 12
VPN 1 VPN 2 VPN 3 VPN 4 VPO Virtual address
L1PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory 40 directory 40 directory 40 lable
CR3 i / vi /
Physical
address
of L1 PT 9 9 9 9 ;
L] L1 PTE L2PTE H LA LBPTE H LA| L4 PTE |— Offset into
12 physical and
virtual page
region region region region address
per entry per entry per entry per entry of page
40
40 12
| PPN | PPO | Physical address

Figure 9.25 Core i7 page table translation. Legend: PT: page table, PTE: page table entry, VPN: virtual page
number, VPO: virtual page offset, PPN: physical page number, PPO: physical page offset. The Linux names for

the four levels of page tables are also shown.

Linking

Compilation pipeline:

gcc -S code.c // Compile C -> code.s

gcc -c code.s // Assemble code.s -> code.o

gcc code.o // Link objfile to make executable -> ./a.out

Object Files

Aka "Relocatable Object Files".

On unix systems, .o files are in ELF format ("Executable and Linkable
Format").

Are binary objects that contain several sections:

header, text, rodata, data, bss, symtable, rel_text, rel data, debug,
line, strtab, footer

Object Files: readelf

Cool trick: Use the readelf program to inspect object files!

$ readelf -a code.o

Symbol table '.symtab' contains 11 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000 © NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 © FILE LOCAL DEFAULT ABS code.c

Linking: Demo

Demo: Show how to use CSAPP functions in
my C programs.

