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Announcements

● Lab 4 due next week
○ June 3rd (Wednesday)

● Final Exam in 2 weeks!
○ Final Examination Code: 15 - Thursday, June 

11, 2015, 8:00am-11:00am
○ Location: Ackerman Grand Ballroom
○ Cumulative (emphasis on post-MT2)



Overview

● Virtual Memory
● Linking



Virtual Memory

Tip: Read the textbook! (Chapter 9)
Pretty detail-oriented section.

Google is your friend.



Virtual Memory: Motivation
Multiple user programs need to use RAM.

Problem: Only one DRAM unit on machine.

Solution: Use Virtual Memory to let programs think they 
have access to entire DRAM.



Virtual Memory: High Level
A program's memory is an array with 2^N elements that 
resides on disk. 
Partition memory into equal-sized chunks: "pages"

Use DRAM as cache for program's memory (ie a cache for 
disk).



Virtual Address Spaces
Each user process has its own virtual address space. The 
virtual addresses from P1 do not interfere with the vaddrs 
of P2.

Ex: Suppose P1,P2 both write to vaddr 0x7fffabcd. In 
general, P1 and P2 will write to different *physical* 
locations.



Virtual Address Spaces
Note: There are ways for different processes to *share* 
pages, ie for two processes to write to the same physical 
memory location. (mmap)



Physical vs Virtual
Physical Address Space: Refers to addressable bytes on 
the DRAM installed in the machine.

Virtual Address Space: Refers to addressable bytes that 
may reside in DRAM or on disk. The address space that 
each program owns.



Page Tables
Maps vaddr to actual location, ie either DRAM or disk.

Page Table Entry (PTE): 
Rows of page table.

In practice, PTE's include 
more information (such as 
NX-bit, permissions, etc.)



Page Tables
Resides in DRAM. 
The special CR3 register stores the start location of the 
page table. (register lives in MMU)

Each page stores many addresses. (Ex: 1 page stores 4 
KiB = (4*2^10) addresses)



Page Tables
Can nest page tables too:



Using Page Tables
(1) Split vaddr into VPN 
and VPO
(2) Use VPN as index into 
page table.
    If not valid: Page fault!
    Else:
(3) Grab PPN from table, 
and construct paddr as:
    paddr = PPN | VPO

concatenate



Page Fault
If the PTE for a vaddr is invalid, then the 
physical page PPN is not loaded in 
DRAM.
Must ask OS to:
(1) Evict a victim page from DRAM
(2) Load the physical page PPN to 
DRAM
(3) Re-run the instruction that generated 
the page fault.

(1) Split vaddr into VPN 
and VPO
(2) Use VPN as index into 
page table.
    If not valid: Page fault!
    Else:
(3) Grab PPN from table, 
and construct paddr as:
    paddr = PPN | VPO

concatenate



Figure: Page Hit

VA: vaddr
PA: paddr
PTE: Page Table 
Entry
PTEA: Page Table 
Entry Address



Figure: Page Fault

VA: vaddr
PA: paddr
PTE: Page Table 
Entry
PTEA: Page Table 
Entry Address



Paging: Disk I/O
Suppose process P1 gets a page fault. Swapping in the new 
page (and swapping out victim page) is fairly expensive, due to 
disk I/O.
So, OS will likely run other processes while doing the page 
swaps.

Question: Suppose 
P1,P2 are running 
processes. Can  you 
think of a scenario 
where a program P1 
gets "stuck"?

Answer: Thrashing! Suppose the first page fault evicted a 
page that P2 needed. When P2 runs, it will issue its own 
page fault. Suppose the second page fault evicts a page 
that P1 needs. When P1 resumes, it will issue another page 
fault.
...Rinse and repeat...



MMU: Memory Management Unit

MMU is a special chip in the CPU that performs 
address translation.
Contains hardware to do vaddr->paddr 
mapping.

Goal: MMU must be as fast as possible.



TLB: Cache for MMU
Short for: "Translation Lookaside Buffer"
Caches mappings: VPN -> PPN

Typically has high associativity (ie 4-way set associative).



TLB: Hit

VA: vaddr
PA: paddr
PTE: Page Table 
Entry
PTEA: Page Table 
Entry Address



TLB: Miss

VA: vaddr
PA: paddr
PTE: Page Table 
Entry
PTEA: Page Table 
Entry Address



TLB: Usage
Internally: Split up VPN into "tag" and "set index" bits 
(TLBT, TLBI). Use tag, set-index for cache operation.

vaddr



Tour: Translate Virtual Address
(Based off of example in book: Chapter 9.6.4, pg. 794)



Tour: Translate Virtual Address
Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes
TLB is four-way set associative w/ 16 total entries.

Question: 
How many 
bits are in 
VPO? VPN?

Answer: Since page 
size is 64 bytes, we 
need log2(64) = 6 bits 
for VPO.
VPN is (14 - 6) = 8 
bits.

Question: 
How many bits 
are in PPO? 
PPN?

Answer: Since 
VPO=PPO, need 6 
bits for PPO.
Need (12-6)=6 bits 
for PPN.



Tour: Translate Virtual Address
Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes
TLB is four-way set associative w/ 16 total entries.



Tour: Translate Virtual Address
Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes

TLB is four-way set associative w/ 16 total entries.

Question: How many 
TLB set-index bits do I 
need?
How many TLB tag bits?

Answer: Since there are four 
sets, we need log2(4) = 2 
set-index bits.
There are (8-2)=6 tag bits.



Tour: Translate Virtual Address
Virtual addresses are 14 bits wide
Physical addresses are 12 bits wide
Page table is single-level, with page size of 64 bytes

TLB is four-way set associative w/ 16 total entries.

Question: How many 
TLB set-index bits do I 
need?
How many TLB tag bits?

Answer: Since there are four 
sets, we need log2(4) = 2 
set-index bits.
There are (8-2)=6 tag bits.



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x03d4. List 
the steps. What is the result of translating vaddr?



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x03d4. List 
the steps. What is the result of translating vaddr?

Answer: TLB -> Hit, PPN=0x0D.
paddr is: 0x354.



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x023A. List 
the steps. What is the result of translating vaddr?



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x023A. List 
the steps. What is the result of translating vaddr?

Answer: TLB miss, PageTable(0x08) -> Hit, PPN=0x13.
paddr = 0x4FA.



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x005F. List 
the steps. What is the result of translating vaddr?



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x005F. List 
the steps. What is the result of translating vaddr?

Answer: TLB -> Miss! PageTable(0x01) -> Miss, pagefault!



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x003A. List 
the steps. What is the result of translating vaddr?



Tour: Translate Virtual Address
Exercise: Suppose CPU requests to load a value from vaddr 0x003A. List 
the steps. What is the result of translating vaddr?

Answer: TLB -> Miss (Invalid). PageTable(0x00) -> Hit, PPN=0x28.
paddr = 0xA3A



TLB Invalidation

TLB is just another cache.

Question: Under what 
scenarios do we have to 
invalidate a cache 
entry?

Answer: 
(1) We do a context switch (P1's vaddr 0x7fffabcd != 
P2's vaddr 0x7fffabcd).
How to work around this?
(2) When a page fault occurs, and the evicted page 
resides in the TLB. Since the evicted page no longer 
is in memory, we must invalidate TLB entry.
(3) Cache replacement. When there is a TLB miss, 
and a page table hit, then we will replace an older 
TLB entry with the new mapping.



Context Switch
Recall: A CPU can only execute instructions from one process at 
a time.
To support multiprocessing, CPU's will periodically switch 
processes to ensure that each process gets execution time 
"fairly". Controlled by OS's process scheduler.
Switching from one process to another is called a context 
switch.



Context Switch
Question: Upon a process context switch, what elements of the 
CPU need to be saved/restored/modified?

Answer: 
Need to save/restore: registers, program counter, memory.
Need to invalidate/flush: TLB.

Why do I not need to invalidate Caches (L1,L2,etc.)?
    Caches use physical addresses, not virtual addresses! P2 will never 
use the physical address of P1, since addr spaces of P1, P2 are distinct.



TLB: Context Switch
Question: How to avoid having to flush TLB each time 
CPU performs a process context switch? Pros/Cons?

Answer: Can add a process-ID tag (PID) to each TLB cache entry. 
Upon a context switch, don't have to invalidate anything! Must 
modify MMU to also check current PID.
Pros: Fewer TLB misses due to process context switches.
Cons: Makes MMU hardware more complex/expensive.



Nested Page Tables
Suppose we have a single-level page table.
32-bit address space, 4 KiB pages, 4-byte PTE.

Question: How large would 
the page table need to be to 
address entire address 
space (in MiB)?

Answer: 
# bits PPO = log2(4*2^10) = log2
(2^12) = 12.
Since 32-bit addrspace, there are (32-
12)=20 bits in PPN.
Thus, there are 2^20 entries in page 
table.
Size = (4 bytes) * (2^20) = 4 MiB.



Nested Page Tables
Suppose we have a single-level page table.
64-bit address space, 4 MiB pages, 9-byte PTE.

Question: How large would 
the page table need to be to 
address entire address 
space?

Answer: 
# bits of PPO = log2(4*2^20) = 22.
# bits PPN = (64-22) = 42.
# entries = 2^42
Size = (9 bytes) * (2^42) = 36 TiB = 
36,864 GiB

Ouch! Not feasible to store entire page table in memory!



Nested Page Tables
Solution: Instead of a single flat page table, use nested 
page tables.
Each PTE points to the start of another page table.
Final page table contains actual PPN's. 
Location of first page table is given by register CR3.



Example: Two-level Page Table



Example: Two-level Page Table

Idea: If a program 
only uses a tiny part 
of its address space, 
then most of the 
PTE's at L1 will be 
null.
Thus, no need to 
create PTE's for 
unused addresses!



Nested Page Tables
Each page of L1 page table references large chunks of 
address space (ie 4 MiB).
Pages of L2 page table reference smaller chunks (ie 4 KiB).
Similarly for L3, L4, etc.



Nested Page Tables
Only need to keep L1 page table in main memory at all 
times!
Other levels (L2,L3,L4,etc.) can be paged in/out as 
necessary (ie stored on disk/restored to DRAM).



Nested Page Tables
Suppose page table has k-levels. Partition VPN into k-sets. Use 
each VPN_i as the index into the i-th page table.





Linking
Compilation pipeline:
gcc -S code.c // Compile C -> code.s

gcc -c code.s // Assemble code.s -> code.o

gcc code.o // Link objfile to make executable -> ./a.out



Object Files
Aka "Relocatable Object Files".
On unix systems, .o files are in ELF format ("Executable and Linkable 
Format").
Are binary objects that contain several sections:
    header, text, rodata, data, bss, symtable, rel_text, rel_data, debug, 
line, strtab, footer



Object Files: readelf
Cool trick: Use the readelf program to inspect object files!

$ readelf -a code.o
…
Symbol table '.symtab' contains 11 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS code.c
...



Linking: Demo

Demo: Show how to use CSAPP functions in 
my C programs.


