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Abstract

The goal of this writeup is to provide a high-level introduction to the "Kernel Trick" commonly
used in classification algorithms such as Support Vector Machines (SVM) and Logistic
Regression. My target audience are those who have had some basic experience with machine
learning, yet are looking for an alternative introduction to kernel methods.

We first examine an example that motivates the need for kernel methods. After an explanation
about the "Kernel Trick", we finally apply kernels to improve classification results.

The following code examples are in Python, and make heavy use of the sklearn, numpy, and
scipy libraries. I have made the code used in this writeup available - head to the bottom of the
article for links to the source files.

So, What is a Kernel Anyway?

A Kernel Function  is a function [notation] that obeys certain
mathematical properties. I won't go into these properties right now, but for now think of a
kernel as a function that computes a dot product between  ,  (e.g. a measure of 'similarity'
between  ).

Unimpressed? Me too! Don't worry, we'll examine its significance in greater detail.

Linear SVM, Binary Classification

Suppose that we have a two-class dataset  , and we wish to train a classifier  to predict the
class labels of future data points. This is known as a "binary classification" problem, and can be
cast as "Yes"/"No" questions such as:

Medicine
Given a patient's vital data, does the patient have a cold?

Computer Vision
Does this image contain a person?

A popular off-the-shelf classifier is the Support Vector Machine (SVM), so we will use this as our
classification algorithm.

"Binary vs. Multiclass Classification"

In most introductory courses to Machine Learning, binary classifiers are often the focus due
to their simpler presentation. However, many problems inherently have more than two
possible outcomes. For instance, you may want to train a face verification system that can
detect the identity of a photograph from a pool of  people (where  ). This sort of
problem is known as a "multiclass" classification problem.
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Most mathematical definitions of classifiers are originally posed as binary classifiers,
including the SVM. Thus, there are two main approaches to the multiclass problem:

Directly add a multiclass extension to a binary classifier.
Pros: Provides a principled way of solving the multiclass problem.
Cons: Multiclass extensions tend to be much more complicated than the original
binary formulation. This may lead to significantly longer training and test
procedures. Even worse, experimental results may not be that much better than
ad-hoc methods such as (2) [5].

1. 

Combine multiple binary classifiers to create a 'mega' multi-class classifier. Two
popular implementations of this idea are the "One-versus-One" (OVO) and
"One-versus-All" (OVA) schemes.

Pros: Simple idea, easy to implement, can be much faster than multiclass
extensions (1). Some people suggest that empirical results tend to be on par with
(1) [5].
Cons: Ultimately is an ad-hoc method for solving the multiclass problem - there
may exist datasets for which OVO/OVA will perform poorly on, but general
multiclass classifiers (1) perform well on.

2. 

Refer to [5] for an excellent survey of multiclass techniques. It is interesting to note that [5]
recommends to use OVO/OVA rather than more-complicated generalized multiclass
classifiers. Their justification is: OVO/OVA tends to produce similar results to (1) with
significantly less computation time.

Recall that a Linear SVM finds a hyperplane  that best-separates the data points in the training
set by class label.  is called the decision boundary, and cuts the space into two halves: one half
for class '0', and the other half for class '1'. To classify a point  (where  is the dataset),
we simply see which 'side' of  that  lies. Note that this description only applies to binary
classification problems - if your dataset has more than two classes, there are other SVM
approaches (such as one-versus-all, one-versus-one, etc.).

As a quick example, here's a synthetic dataset that is designed to be linearly separable:

Figure 1: A two-class, linearly separable dataset.

Training and evaluating a linear SVM on this dataset yields the following decision boundary
(Figure 2). Because the data is easily linearly separable, the SVM is able to find a margin that
perfectly separates the training data, which also generalizes very well to the test set. The
hyperplane  (a line in  ) separates the space into two halves: points that live in the brownish
region are classified as class '1', whereas points that live in the blueish region are classified as
class '0'.
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Figure 2: The Decision Boundary of a Linear SVM on a linearly-
separable dataset. The solid line is the boundary. The SVM is

trained on 75% of the dataset, and evaluated on the remaining
25%. Circled data points are from the test set.

Unfortunately, in practice we will not always encounter such well-behaved datasets. Let's take a
look at a dataset that is not linearly separable.

A Linearly Nonseparable Dataset

Figure 3: A two-class dataset that is not linearly separable. The
outer ring (cyan) is class '0', while the inner ring (red) is class '1'.

Consider the dataset in Figure 3. No line in  can reasonably separate the two classes - thus, we
expect that a linear SVM will perform poorly on this dataset. As a sanity check, let's train a linear
SVM on this dataset, and see just how poorly it performs. As a baseline, we will compare against
a random classifier, which randomly chooses a class label ('0', '1') for each test point with
uniform probability:
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==== Evaluating Random Classifier
== Accuracy: 0.45
             precision    recall  f1-score   support

          0       0.74      0.42      0.53       151
          1       0.23      0.55      0.33        49

avg / total       0.62      0.45      0.48       200

==== Finished Random Classifier (0.000 s)

==== Evaluating SVM (kernel='linear'), 2-fold cross validation
    Parameters to be chosen through cross validation:
        C: [1.0, 10.0, 100.0, 1000.0, 10000.0]
== Best Params: {'kernel': 'linear', 'C': 1.0}
== Best Score: 0.476666666667
== Accuracy: 0.445
             precision    recall  f1-score   support

          0       0.78      0.37      0.50       151
          1       0.26      0.67      0.37        49

avg / total       0.65      0.45      0.47       200

==== Finished Linear SVM (1.290 s)

As we can see, the RandomClassifier and Linear SVM both perform poorly. It's always a bummer
when our classifier is as bad as random guessing! To get a geometric sense of the SVM's failure to
cope with this dataset, see Figure 4 for the decision boundary  .

Figure 4: The decision boundary of a linear SVM classifier.
Because the dataset is not linearly separable, the resulting

decision boundary performs and generalizes extremely poorly.
Like in Figure 2, we train the SVM on 75% of the dataset, and test

on the remaining 25%.

Unsurprisingly, the decision boundary fails to coherently separate the dataset, resulting in poor
performance.
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Dealing with Nonseparable Data

Obviously, we would like to handle linearly nonseparable data - otherwise, SVMs wouldn't be
very useful. In the SVM example, the primary obstacle is the constraint that the decision
boundary be linear in the original feature space (here,  ). However, this is not always the
correct decision boundary to find. For instance, in Figure 4, a better decision boundary would be
a circular decision boundary that separates the outer cyan ring from the inner red ring.

Could we generalize the SVM formulation to explicitly discover decision boundaries with
arbitrary shape? As it turns out, if you get into the nitty-gritty mathematical details of the SVM,
the derivations assume that the decision boundary is a separating hyperplane  . I imagine
there is a way to recast the SVM optimization problem such that a more-general decision surface
can be found, but I'd bet that the resulting optimization would carry a significant computational
burden when compared to the linear SVM formulation.

So, it appears that we are stuck with an SVM that, for an N-dimensional dataset, finds an (N-1)-
dimensional separating hyperplane. What if we could play with N...?

Idea: Separable in higher-dimension

Figure 5: (Left) A dataset in  , not linearly separable. (Right) The same dataset transformed by

the transformation:  .

Let's think outside the box for a moment. Consider the linearly nonseparable dataset in Figure 5
(left), with its two concentric rings. Imagine that this dataset is merely a 2-D version of the 'true'
dataset that lives in  , Figure 5 (right). The  dataset is easily linearly separable by a
hyperplane. Thus, provided that we work in this  space, we can train a linear SVM classifier
that successfully finds a good decision boundary.

However, we are given the dataset in  . The challenge is to find a transformation  ->  ,
such that the transformed dataset is linearly separable in  . In Figure 5, the  used is

 , which after applied to every point in Figure 5 (left) yields the
linearly separable dataset Figure 5 (right).

Note: It is convention to use the Greek letter 'phi'  for this transformation  , so I'll use 
from here on.
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Assuming we have such a transformation  , the new classification pipeline is as follows. First
transform the training set  to  with  . Train a linear SVM on  to get classifier  . At test

time, a new example  will first be transformed to  . The output class label is then

determined by:  .

Observation: This is exactly the same as the train/test procedure for regular linear SVMs, but
with an added data transformation via  .

In Figure 6, note that the hyperplane learned in  is nonlinear when projected back to  .
Thus, we have improved the expressiveness of the Linear SVM classifier by working in a
higher-dimensional space.

Figure 6: (Left) The decision boundary  shown to be linear in  . (Right) The decision boundary
 , when transformed back to  , is nonlinear.

Recap

A dataset  that is not linearly separable in  may be linearly separable in a higher-
dimensional space  (where M > N). Thus, if we have a transformation  that lifts  the
dataset  to a higher-dimensional such that  is linearly separable, then we can train a
linear SVM on  to find a decision boundary  that separates the classes in  . Projecting the
decision boundary  found in  back to the original space  will yield a nonlinear decision
boundary.

This means that we can learn nonlinear SVMs while still using the original Linear SVM
formulation!

Here are two fantastic animated visualizations of this concept:

"SVM with polynomial kernel visualization"1. 
"Performing nonlinear classification via linear separation in higher dimensional space"2. 

The above recap is the key concept that motivates "kernel" methods in machine learning. If you
stopped reading here, you will still have the main idea why we use kernels in machine learning
tasks. However, there is more to the story (plus, we haven't gotten to kernels yet!).
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Caveat: Impractical for large dimensions

The scheme described so far is attractive due to its simplicity: we only modify the inputs to a
'vanilla' linear SVM. However, consider the computational consequences of increasing the
dimensionality from  to  (with  ). If  grows very quickly with respect to  (e.g.

 ), then learning SVMs via dataset transformations will incur serious computational
and memory problems!

Here is a concrete example: the Polynomial Kernel is a kernel often used with SVMs. For a
dataset in  , a two-degree polynomial kernel (implicitly) performs the transformation

 . This transformation adds three additional
dimensions  ->  .

In general, a d-dimensional polynomial kernel maps from  to an  -dimensional space [6].
Thus, for datasets with large dimensionality, naively performing such a transformation will
quickly become intractable.

Are we hosed? Well, as it turns out...

We only need the dot products!

It turns out that the SVM has no need to explicitly work in the higher-dimensional space at
training or testing time. One can show [1] that during training, the optimization problem only

uses the training examples to compute pair-wise dot products  , where  .

Why is this significant? It turns out that there exist functions that, given two vectors v and w in
 , implicitly computes the dot product between v and w in a higher-dimensional without

explicitly transforming v and w to . Such functions are called kernel functions,  .
The implications are:

By using a kernel  , we can implicitly transform datasets to a higher-dimensional
 using no extra memory, and with a minimal effect on computation time.

The only effect on computation is the extra time required to compute  .
Depending on  , this can be minimal.

1. 

By virtue of (1), we can efficiently learn nonlinear decision boundaries for SVMs simply by

replacing all dot products in the SVM computation with  !

2. 

The usage of kernel functions to achieve benefits (1) and (2) is the "Trick" in the "Kernel Trick".

Kernel Functions

In this context, a Kernel function is a function  . There are some important
mathematical properties that must be obeyed in order to be considered a proper kernel
function: see [8] (Sec. 3.2-3.3) for a discussion about these properties.

Intuition

A kernel  effectively computes dot products in a higher-dimensional space  while
remaining in  . In symbols:

For  , where  is an inner product of 
, M > N, and  transforms  to  .

I hope that the reader is able to appreciate this surprising result. At least to me, it seems
surprising that we can compute dot products between  in  with a function  that
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works exclusively in  .

Popular Kernels

Most off-the-shelf classifiers allow the user to specify one of three popular kernels: the
polynomial, radial basis function, and sigmoid kernel. For instance, sklearn's SVM
implementation svm.SVC has a kernel parameter which can take on linear, poly, rbf, or
sigmoid [4]. You can even pass in a custom kernel.

For the following, let  be rows from the dataset  .

Polynomial Kernel: 1. 

Radial Basis Function (RBF) Kernel:  , where 2. 

Sigmoid Kernel: 
Author Note: For some reason, sklearn's svm.SVC appears to use both the gamma and
coef0 parameters for the kernel='sigmoid', despite the above definition only
having one parameter r. I'm not sure what is going on under the hood in sklearn's
sigmoid kernel, but not cross-validating across both gamma and coef0 resulted in
degenerate decision boundaries (e.g. always assigning -1 to every test example).

3. 

Unfortunately, choosing the 'correct' kernel is a nontrivial task, and may depend on the specific
task at hand. No matter which kernel you choose, you will need to tune the kernel parameters to
get good performance from your classifier. Popular parameter-tuning techniques include K-Fold
Cross Validation [7].

Back to our Example...

Let's apply the Kernel Trick to the linearly nonseparable dataset in Figure 3. Figures 6-8 show
the decision boundaries (along with chosen parameters found via cross validation) for the
polynomial, RBF, and sigmoid kernels. As we can see, the resulting SVMs are able to learn
high-quality decision boundaries through the application of kernels. For more information
about the training processes, such as parameter selection ranges, refer to the sklearn output
following the figures:
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Figure 6: The decision boundary with a Polynomial kernel.
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Figure 7: The decision boundary with a Radial Basis Function
(RBF) kernel.

Author's Note: The Polynomial and RBF kernels found very similar decision boundaries.
Interestingly, the Sigmoid kernel resulted in a slightly 'wobbly' decision boundary - this behavior
may simply stem from the choice of parameters, rather than from some intrinsic property of the
Sigmoid kernel (I'm not sure).
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Figure 8: The decision boundary with a Sigmoid kernel.

Hide/Show sklearn Output...

======== Running NONSEPARABLE demo ========
...reading dataset from dataset.p...
==== Evaluating Random Classifier
== Accuracy: 0.45
             precision    recall  f1-score   support

          0       0.74      0.42      0.53       151
          1       0.23      0.55      0.33        49

avg / total       0.62      0.45      0.48       200

==== Finished Random Classifier (0.000 s)

==== Evaluating SVM (kernel='linear'), 2-fold cross validation
    Parameters to be chosen through cross validation:
        C: [1.0, 10.0, 100.0, 1000.0, 10000.0]
== Best Params: {'kernel': 'linear', 'C': 1.0}
== Best Score: 0.476666666667
== Accuracy: 0.445
             precision    recall  f1-score   support

          0       0.78      0.37      0.50       151
          1       0.26      0.67      0.37        49
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avg / total       0.65      0.45      0.47       200

==== Finished Linear SVM (1.290 s)

==== Evaluating SVM (kernel='poly'), 2-fold cross validation
    Parameters to be chosen through cross validation:
        C: [1.0, 10.0, 100.0, 1000.0]
        coef0: [1.0, 10.0, 100.0]
        gamma: [0.001, 0.01, 0.1]
        degree: [2, 4]
== Best Params: {'kernel': 'poly', 'C': 1.0, 'coef0': 10.0, 'gamma': 0.1, 'degree': 4}
== Best Score: 1.0
== Accuracy: 1.0
             precision    recall  f1-score   support

          0       1.00      1.00      1.00       151
          1       1.00      1.00      1.00        49

avg / total       1.00      1.00      1.00       200

==== Finished Polynomial SVM (2.290 s)

==== Evaluating SVM (kernel='rbf'), 2-fold cross validation
    Parameters to be chosen through cross validation:
        C: [1.0, 10.0, 100.0, 1000.0, 10000.0]
        gamma: [0.0001, 0.001, 0.01, 0.1]
== Best Params: {'kernel': 'rbf', 'C': 10.0, 'gamma': 0.1}
== Best Score: 1.0
== Accuracy: 1.0
             precision    recall  f1-score   support

          0       1.00      1.00      1.00       151
          1       1.00      1.00      1.00        49

avg / total       1.00      1.00      1.00       200

==== Finished RBF Kernel (0.555 s)

==== Evaluating SVM (kernel='sigmoid'), 2-fold cross validation
    Parameters to be chosen through cross validation:
        C: [0.1, 1.0, 10.0, 100.0, 1000.0, 100000.0]
        coef0: [-10000.0, -1000.0, -100.0, -10.0, 1.0, 10.0, 100.0]
        gamma: [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
== Best Params: {'kernel': 'sigmoid', 'C': 1000.0, 'coef0': -10.0, 'gamma': 10.0}
== Best Score: 0.991666666667
== Accuracy: 0.99
             precision    recall  f1-score   support

          0       1.00      0.99      0.99       151
          1       0.96      1.00      0.98        49

avg / total       0.99      0.99      0.99       200

==== Finished Sigmoid SVM (5.995 s)

...Finished. Total Time: 10.330 s
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Summary

We review the main points of this writeup:

Brief review of Linear SVMs for Binary Classification.1. 
Encountered a linearly non-separable dataset that a Linear SVM is not able to handle.2. 
Data which is linearly nonseparable in  may be linearly separable in a higher-
dimensional space  (  , where  is the original feature space dimensionality).

3. 

Unfortunately, a naive implementation of (3) would result in a massive time and space
burden. For instance, for the  -degree polynomial kernel, the new feature space

dimensionality  grows at a rate of  .

4. 

However, the SVM formulation only requires dot products  between training
examples  (where  is the training data).

5. 

By replacing all dot products  with a kernel function  , we can implicitly
work in a higher-dimensional space  (  ), without explicitly building the higher-
dimensional representation. Thus, the SVM can learn a nonlinear decision boundary in the
original  , which corresponds to a linear decision boundary in  .

This is the "trick" in "Kernel trick"
Machine Learning folks say that we have increased the "expressiveness" of Linear
SVMs. Recall that the vanilla Linear SVM can only learn linear decision boundaries in

 . By introducing kernel methods, Linear SVMs can now learn nonlinear decision
boundaries in  .

Remember: the decision boundary will still be linear in  , the feature space
induced by the kernel  !

6. 

Finally, we empirically evaluated SVMs with various kernels, and observed a significant
improvement when the dataset is not linearly separable.

7. 

Closing Remarks

I hope that this writeup has provided an approachable explanation of the "Kernel Trick". I make
a deliberate effort to emphasize the high-level concepts that demonstrate the intuition behind
kernel methods. If the reader is interested in a more mathematically rigorous handling of kernel
methods, I direct the reader to several fantastic reference material that I referred to while
creating this article.

[1] was prepared by Professor Michael Jordan (University of California, Berkeley) for a Spring
2004 offering of CS 281-B (Statistical Learning Theory). The article covers the same points that
this writeup touches upon, but precisely shows how we can replace dot products  with

kernel functions  within the SVM mathematical formulation. [2] is a set of lecture slides
prepared by Professor Robert Berwick (MIT), and provides a detailed overview of the SVM in an
easy-to-understand format.

Future Work

An illuminating exercise would be to investigate the effects of poor parameter choices for kernel
methods. Because using a kernel adds additional parameters to the model (for instance, the RBF
kernel has the  parameter), proper model selection is critical to achieve good performance.

Also, an interesting question to explore is: for a given dataset  , does there always exist a
kernel  such that a linear SVM perfectly separates the class labels with a hyperplane?

Finally, it would be neat to take real-world datasets and compare the performance of various
kernels on various classification tasks. Synthetic datasets offer a convenient way to illustrate
concepts, but actually seeing a nontrivial example is pretty exciting.
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Source Code

Here are links to the code used to generate the figures and empirical results:

code_kernel_trick.zip
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