PIC 10A 1C Week 10b Exercises. TA: Eric Kim.

1. Retail Therapy

a.
class ShopCart {
public:
ShopCart (); // Initialize with empty cart
ShopCart (const vector<string>& items); // Initialize with given items

void add(const string& item); // Adds item to the cart
size t size() const; // Returns number of items in cart
string get item(size t i) const; // returns item at index i, or empty string "" if
// not valid index
private:
vector<string> items;
}i
A ShopCart is used to store items that we want to buy, ie at the grocery store, or on Amazon:
ShopCart mycart;
mycart.add ("Scrubs Season 4"); mycart.add ("Stuffed Dog");
cout << mycart.size() << endl; // Outputs: 2
Define the class implementation that achieves the above desired behavior.



b.
We want to be able to add the contents of one cart to another via the "+=" operator:

ShopCart jdcart; jdcart.add ("Appletini™);

ShopCart janitorcart; janitorcart.add ("pager");

jdcart += janitorcart;

cout << jdcart.size(); // Outputs: 2, stores: ["Appletini", "pager"]
cout << Jjanitorcart.size(); // Outputs: 1, stores: ["pager"]

Define the "+=" operator to implement the above desired behavior.

C.
Next, define the "<<" operator so that we can display carts in the following way:
vector<string> items = {"knifewrench", "mop"};
ShopCart janitorcart (items);
cout << Jjanitorcart << endl; // Displays: ShopCart (2, {"knifewrench", "mop"})
In other words, the ShopCart should be displayed as:
ShopCart (<nb. of items>, {"<iteml>", "<item2>", ., "<itemN>"})
Note: It's OK for your solution to have an extra space at the end of the list, ie:
ShopCart (2, {"knifewrench", "mop" }); // note the space after "mop"

d.
Define the "<" operator so that we can compare carts based on the total number of items in the cart:
ShopCart dr reid;
dr reid.add("coffee"); dr reid.add("clipboard");
ShopCart turkleton;
turkleton.add ("pancake") ;
if (turkleton < dr reid)
cout << "Turk has fewer items than Dr. Reid";



2. string2double2string

Suppose | have a vector of strings that contain decimal values:
vector<string> vl = {"2.0", "1.32", "2.44", "4.2"};
Write a function that doubles each of these values, but keeps each value as a string:

funny double(vl); // vl is now:

["4‘0", "2.64",

Hint: You'll want to use istringstream and ostringstream.

3. I'm in your base, overloading your dudes.

a.

"4.88",

"8‘4"]

Consider the following code. What is the expected output? If there is an error, explain why.

string foo(int a, int b) {
if (a < b)
return "foo";
return "bar";
}
string foo(int a, double b) {
if (a < b)
return "baz";
return "garply";
}
cout << foo (2, 1) << endl;
cout << foo (2, 1/2) << endl;
cout << foo (2, 1.0) << endl;

Output:

b.

Suppose | added the following function to my file:

int foo (int a, double b) {
if (a < b)
return 42;
return 0;

}
My code no longer compiles correctly. Why?




4. We all make mistakes

Louis Reasoner wants to write the following program:

(1) Creates a file "mynums.txt", and writes the first 5 even numbers to the file, each on a separate line.

(2) Reads the file we just created ("mynums.txt"), but outputs the square of each number.
Louis codes up the following:
finclude <iostream>
#include <fstream>
using namespace std;
int main () {
/* (1) Write the first 3 even numbers to: mynums.txt */
ofstream out ("mynums.txt");
for (int 1 = 0; 1 < 3; ++1i)
out << 1i*2 << endl;
out.close() ;
/* (2) Read in mynums.txt, output the square of each number */
ifstream myfile ("mynums.txt") ;

int num;
while (!myfile.eof()) {
myfile >> num; cout << num*num << endl;
}
cout << "Done!" << endl; return 0;

}
However, the output is strange:

0

4

16

16
Done!

Why did the last number get output twice?
Hint: Consider that myfile's buffer looks like: "0\n2\n4\n". How would cin/ifstream process this?
Hint 2: After the while loop ends, myfile is in a failure state:

cout << "isfail? " << myfile.fail() << endl; // displays: "isfail? 1"

b.
Write a fixed version of the while loop in (2).



