
PIC 10A 1C. Week 6a Exercises. TA: Eric Kim. ​[Solutions] ​(Updated: 2/9/2016 v2) 

1. Apples and Oranges 
Consider the following class interfaces: 

class Apple { 
private: 
  int mya; 
public: 
  int myb; 
  Apple(); 
  Apple(int a); 
  void foo(Apple a); 
}; 

class Orange { 
public: 
  int myc; 
  Orange(int c); 
  void garply(Apple a, Orange 
b); 
}; 

Consider the following code. Are there any issues? 

Apple apple1(2); 
Orange orange1(3); 
Apple apple2(orange1.myc); 
Orange orange2(apple2.mya); 
garply(apple1,orange1); 
orange1.foo(apple1); 
orange1.garply(Apple(1), Orange(2)); 

 
[Solution] 

Apple apple1(2); 
Orange orange1(3); 
Apple apple2(orange1.myc); 
Orange orange2(apple2.mya); // mya is private! can't access 
garply(apple1,orange1); // need to call garply on Orange object, ie 
    // orange1.garply(apple1,orange1); 
orange1.foo(apple1); // foo is not a method of the Orange class, 
    // is a method of the Apple class. 
orange1.garply(Apple(1), Orange(2)); 

2. const Practice 
Identify any possible issues with the code: 
[Solution] 
int a = 1; 
const int b = 1; 
int& c = a; 
int& d = b; // ERROR: Can't point non­const reference to const. 
c = 0; 



const int& aa = a; 
const int& bb = b; 
aa = 4; // ERROR: Can't modify a const reference 
bb = 4; // ERROR: Can't modify a const reference 

3. Robbers Robbing Robbers 
Define a Robber class interface that satisfies the following code: 

Robber rusty("Rusty"); 
Robber dan("Dan") 
rusty.greet(dan); 
dan.greet(rusty); 
int item_to_steal = dan.lookat(rusty); 
dan.steal(rusty, item_to_steal); 
cout << rusty.yell(); 

 
[Solution] 
Note​: Many of the method return types are ambiguous (ie Robber::greet could return, say, an 
int, and still adhere to the above code), but here's one valid interface: 
class Robber { 
public: 
    string myname; 
    Robber(string name); 
    void greet(Robber r); 
    int lookat(Robber r); 
    void steal(Robber r, int i); 
    string yell(); 
}; 
 
 


