PIC 10A 1C Week 8b Problems. TA: Eric Kim [v2, Updated: 2/25/2016]

1. Timey-Wimey
Recall the following documentation for the time() function (defined in <ctime>):
/**
* This function takes in a pointer to a time t variable, and assigns to that
* variable the number of seconds since Jan 17 1970 00:00 UTC, then returns
* this value as a time t variable. Given a nullptr input, it simply returns
* the number of seconds since Jan 1lst, 1970.
* (@param timeptr the pointer to time t
* @return the number of seconds elapged since Jan. 1lst, 1970.
**/
time t time(time t *timeptr);
Louis Reasoner wants to write a program that times the number of seconds between user inputs. For
instance, the program should behave as follows:
Press enter to start the timer!
<you pressed enter!>
Press enter again to stop the timer..
<you pressed enter!>
Time elapsed: 12 seconds.
Does the following program behave correctly? If not, explain why.
#include <ctime>
#include <iostream>
using namespace std;
int main () {
time t t;
cout << "ENTER to start the timer!" << endl;

cin.get(); // Wait for user to hit enter

cout << "<you pressed enter!>" << endl;

time (&t); // Initialize timer t

cout << "Press enter again to stop the timer...\n";
cin.get(); // Wait for user to hit enter again
cout << "<you pressed enter!>" << endl;

time t duration = time(nullptr) - t;

cout << "Time elapsed: " << duration << " seconds.\n";

return 0;

2. Hole in my Vector

Write a function vecremove (vector<int>&vec, size t ind) that removes the element at
index ind. Make sure that the elements to the right of "ind" are shifted over. If the input index is out of
bounds, then the function should not modify the vector - it must not crash:

vector<int> v = {1, 2, 3, 4};
vecremove (v, 1); // v is now: [1, 3, 4]
vecremove (v, 0); // v is now: [3, 4]
vecremove (v,2); // v 1s still: [3,4]

You may not use vector: :erase.
void vecremove (vector<int>& vec, size t ind) {
// YOUR CODE HERE

3. There Is No Compiler...

For the following, write down the expected output. If an error occurs, describe why. Assume all headers
have been included, and that we are using the standard namespace:

int d = 42;

int* dp = &d;

*dp = 43;

cout << *dp << " " < d;

double x = 42.4;
(*x) = (*x) + 1;
cout << x;

double x = 13.42;
double &xr = x;

xXr = xr + 1;

cout << xr << " " K x;

double x = 1.1; double y = 3.2;
double &xr = x;

Xr = &y;

xr += 1;

cout << xr << " " K vy;

int x = 1; int yv = 3;

int *xr = &x;

Xr = &y;

Xr += 1;

cout << xr << " " K< y;

int x = 1; int y = 3;

int *xr = &x;

Xr = &y;

(*xr) += 1;

cout << *xr << " " K y;

string s ("Spoon");
string *sp = &s;
cout << sp.size();

4. Chasing lterators

Consider the following for-loop that squares all of the even numbers within a vector:
vector<int> v = {1, 2, 3, 4, 5, 6};
for(size t i = 0; i < v.size(); ++i) {

if ((v[i] 2) == 0) {

v[i] = v[i]*vI[i];

o°

}
Rewrite the above loop but using iterators (ie using begin, end, vector<int>::iterator, etc.).
// YOUR CODE HERE

5. Best Function Names NA

Consider the following function definitions/declarations. If there are any issues, explain why. Assume all
relevant headers are included, and we are using the standard namespace.

double foo(int a, string s) { void bar (int x) {
return sla + 1]; return x + 1;

} }

char baz(string s) { string garply(string str, int n) {
return s[0]; return s[n];

} }

void zzz () { string hmm() {

} return 'a';

}

double meow (int x) { int bark (double d) {
return x; return d;

1 1

6. Swpa-ing Numbesr

Part 1: Write a function swap1 that swaps the values of two int variables:
int a = 42, b = 16;
swapl (a, Db);
cout << a << " " << Db; // Outputs: 16 42

// YOUR CODE HERE

Part 2: Next, consider the following function:
void swap?2 (int* x, int* y) {

int tmp = *x;
*X — *y;
*y = tmp;

}
Say | have two integers a and b. How do | call swap2 to swap their values?

int a = 2, b =1;
// YOUR CODE HERE

cout << a << " " << b; // Outputs: 1 2

7. Not That Kind of Chunks...

Write a function sort chunks (vector<int>s&v, int k) that sorts each consecutive group of k
elements, ie several "local" sorts, rather than a single global sort:

vector<int> v = {4, 1, 2, 3, 0, 5, 9, 18, 1};

// Sort each group of 3 elements

sort chunks(v, 3); // v is now: [1, 2, 4, O, 3, 5, 1, 9, 18]

vector<int> v2 = {4, 1, 2, 9, 1};
sort chunks(v2, 3); // v2 is now: [1, 2, 4, 1, 9]

Note: the length of v may not necessarily be a multiple of k - be sure to handle this case.
You should use the sort(left_iterator, right_iterator) function defined in <algorithm>:
vector<int> v = {0, 3, 2, -1};
sort (begin(v), end(v)); // v is now: [-1, 0, 2, 3]

void sort chunks(vector<int>&v, int k) {
// YOUR CODE HERE

