PIC 10A 1C Week 8b Problems. TA: Eric Kim [Solutions] [v2, Updated: 2/25/2016]

1. Timey-Wimey
Recall the following documentation for the time() function (defined in <ctime>):
/**
* This function takes in a pointer to a time t variable, and assigns to that
* variable the number of seconds since Jan 17 1970 00:00 UTC, then returns
* this value as a time t variable. Given a nullptr input, it simply returns
* the number of seconds since Jan 1lst, 1970.
* (@param timeptr the pointer to time t
* @return the number of seconds elapged since Jan. 1lst, 1970.
**/
time t time(time t *timeptr);
Louis Reasoner wants to write a program that times the number of seconds between user inputs. For
instance, the program should behave as follows:
Press enter to start the timer!
<you pressed enter!>
Press enter again to stop the timer..
<you pressed enter!>
Time elapsed: 12 seconds.
Does the following program behave correctly? If not, explain why.
#include <ctime>
#include <iostream>
using namespace std;
int main () {
time t t;
cout << "ENTER to start the timer!" << endl;
cin.get(); // Wait for user to hit enter
cout << "<you pressed enter!>" << endl;
time (&t); // Initialize timer t
cout << "Press enter again to stop the timer...\n";
cin.get(); // Wait for user to hit enter again
cout << "<you pressed enter!>" << endl;
time t duration = time(nullptr) - t;
cout << "Time elapsed: " << duration << " seconds.\n";
return 0;
}
[Solution]
It's correct! Good job Louis.

2. Hole in my Vector

Write a function vecremove (vector<int>&vec, size t ind) that removes the element at
index ind. Make sure that the elements to the right of "ind" are shifted over. If the input index is out of
bounds, then the function should not modify the vector - it must not crash:

vector<int> v = {1, 2, 3, 4};
vecremove (v, 1); // v is now: [1, 3, 4]
vecremove (v, 0); // v is now: [3, 4]
vecremove (v,2); // v 1s still: [3,4]
You may not use vector: :erase.
[Solution]

void vecremove (vector<int>& vec, size t ind) {
// YOUR CODE HERE
if (ind >= vec.size()) {
return;

}
/* Shift all elements past ind to the left */

for (size t i = ind; i < (vec.size()-1); ++1i) {
vec[i] = vec[i+1];

}

/* Pop off last element to reduce size */

vec.pop back();

3. There Is No Compiler...

For the following, write down the expected output. If an error occurs, describe why. Assume all headers
have been included, and that we are using the standard namespace:

int d = 42; 43 43
int* dp = &d;

*dp = 43;

cout << *dp << " " < d;

double x = 42.4; Error: x is not a pointer, can't dereference!
(*x) = (*x) + 1;
cout << x;

double x = 13.42; 14.42 14.42

double &xr = x;

xXr = xr + 1;

cout << xr << " " K< x;

double x = 1.1; double y = 3.2; Error: Can't change what a reference points to! le
double &xr = x; "xr = &y;" is an error.

Xr = &y;

xr += 1;

cout << xr << " " K< y;

int x = 1; int y = 3; 002DFDC4 3

int *xr = &x; Note: When we do "xr = &y", we assign the
Xr = &Yy; address of y into xr. Thus, "002DFDC4" is
xr += 1; displayed (or whatever the address of y happens
cout << xr << " " << y; to be).

int x = 1; int y = 3; 44

int *xr = &x;

Xr = &y;

(*xr) += 1;

cout << *xr << " " K< y;

string s ("Spoon");
string *sp = &s;
cout << sp.size();

Error: sp is a pointer, not an object! Can't use

dot-notation on pointer. Should have done:
cout << sp->size();

Recall: sp->size() is equivalent to: (*sp).size()

4. |terators

Consider the following for-loop that squares all of the even numbers within a vector:

vector<int> v = {1, 2, 3, 4, 5, 6};
++1

for(size t i = 0; 1 < v.size();
if ((v[i] 2) == 0) {

v[i] = v[i]l*vI[i];

o°

}

) A

Rewrite the above loop but using iterators (ie using begin, end, vector<int>::iterator, etc.).

// YOUR CODE HERE

[Solution]
for (vector<int> v::iterator iter =
if ((*iter)%2) == 0)
(*1ter) = (*iter) * (*iter);

5. Best Function Names NA

begin (v) ;

iter!=end(v); ++iter) {

Consider the following function definitions/declarations. If there are any issues, explain why. Assume all
relevant headers are included, and we are using the standard namespace.

double foo(int a, string s) {
return sf[a + 1];

}

Error: foo should return a double,

but returns a char.

void bar(int x) {
return x + 1;
}
Error: bar is declared as returning
void, but here it returns an int.

char baz (string s) {

string garply(string str, int n) {

return s[0];

}

Correct! s[0] is indeed a char.

return s[n];
}
Error: s[n] is a char, but garply
should return a string!

void zzz () {

}

This is fine, no issue.

string hmm() {
return 'a';
}
Error: 'a' is a char, but hmm{()
should return a string!

double meow (int x) {
return x;

} }
This is OK - C++ will simply cast

return d;

int bark (double d)

This is OK - however, C++ will cast
the "int x" into a double. the "double d" into an integer,
truncate, so you may lose

information, ie 3.14

6. Swpa-ing Numbesr

Part 1: Write a function swap1 that swaps the values of two int variables:
int a = 42, b = 16;
swapl (a, b);

cout << a << " " << b; // Outputs: 16 42
// YOUR CODE HERE
[Solution]
void swapl (int &x, int &y) {

int tmp = x;

X = V;

y = tmp;

Next, consider the following function:
void swap2 (int* x, int* y) {

int tmp = *x;
*X = *y;
*y = tmp;

}
Say | have two integers a and b. How do | call swap2 to swap their values?

int a = 2, b = 1;

// YOUR CODE HERE

swap? (&a, &b) ;

cout << a << " " << b; // Outputs: 1 2

7. Not That Kind of Chunks...

Write a function sort chunks (vector<int>s&v, int k) that sorts each consecutive group of k
elements, ie several "local" sorts, rather than a single global sort:
vector<int> v = {4, 1, 2, 3, 0, 5, 9, 18, 1};
// Sort each group of 3 elements
sort chunks(v, 3); // v is now: [1, 2, 4, O, 3, 5, 1, 9, 18]
vector<int> v2 = {4, 1, 2, 9, 1};
sort chunks(v2, 3); // v2 is now: [1, 2, 4, 1, 9]
Note: the length of v may not necessarily be a multiple of k - be sure to handle this case.
You should use the sort(left_iterator, right_iterator) function defined in <algorithm>:

vector<int> v = {0, 3, 2, -1};
sort (begin(v), end(v)); // v is now: [-1, 0, 2, 3]
[Solution]

void sort chunks (vector<int>&v, int k) {
// YOUR CODE HERE
vector<int>::iterator iter = begin(v); // Initialize iter to v start
size t 1 = 0;
while (iter != end(v)) {
/* Determine current chunk size */
size t chunk size = k;
if ((1 + k - 1) >= v.size()) {
/* Chunk would go past bounds - shrink this chunk */
chunk size = v.size() - 1i;
}
/* Sort current chunk */
sort (iter, iter + chunk size);
/* Move iter forward to next chunk */
iter = iter + chunk size;
i = 1 + chunk size

}
The trickiest part here is correctly handling the case when v.size() is not a multiple of k. Personally, |

have to do an example scenario on paper to figure out what the correct offsets/indexing is. What's neat
here is how flexible iterators are: we can increment them just like integers, yet they are objects - neat!

