
PIC 10A 1C Week 8b Problems. TA: Eric Kim ​[Solutions] ​[v2, Updated: 2/25/2016]

1. Timey­Wimey
Recall the following documentation for the time() function (defined in <ctime>):
/**
 * This function takes in a pointer to a time_t variable, and assigns to that
 * variable the number of seconds since Jan 1, 1970 00:00 UTC, then returns
 * this value as a time_t variable. Given a nullptr input, it simply returns
 * the number of seconds since Jan 1st, 1970.
 * @param timeptr the pointer to time_t
 * @return the number of seconds elapsed since Jan. 1st, 1970.
 **/
time_t time(time_t *timeptr);
Louis Reasoner wants to write a program that times the number of seconds between user inputs. For
instance, the program should behave as follows:
 Press enter to start the timer!
 <you pressed enter!>
 Press enter again to stop the timer…
 <you pressed enter!>
 Time elapsed: 12 seconds.
Does the following program behave correctly? If not, explain why.
#include <ctime>
#include <iostream>
using namespace std;
int main() {
 time_t t;
 cout << "ENTER to start the timer!" << endl;
 cin.get(); // Wait for user to hit enter
 cout << "<you pressed enter!>" << endl;
 time(&t); // Initialize timer t
 cout << "Press enter again to stop the timer...\n";
 cin.get(); // Wait for user to hit enter again
 cout << "<you pressed enter!>" << endl;
 time_t duration = time(nullptr) ­ t;
 cout << "Time elapsed: " << duration << " seconds.\n";
 return 0;
}
[Solution]
It's correct! Good job Louis.

2. Hole in my Vector
Write a function ​vecremove(vector<int>&vec, size_t ind)​ that removes the element at
index ind. Make sure that the elements to the right of "ind" are shifted over. If the input index is out of
bounds, then the function should not modify the vector ­ it must not crash:
 vector<int> v = {1, 2, 3, 4};
 vecremove(v, 1); // v is now: [1, 3, 4]
 vecremove(v, 0); // v is now: [3, 4]
 vecremove(v,2); // v is still: [3,4]
You may not use ​vector::erase​.
[Solution]
void vecremove(vector<int>& vec, size_t ind) {
 // YOUR CODE HERE
 if (ind >= vec.size()) {
 return;
 }
 /* Shift all elements past ind to the left */
 for (size_t i = ind; i < (vec.size()­1); ++i) {
 vec[i] = vec[i+1];
 }
 /* Pop off last element to reduce size */
 vec.pop_back();
}

3. There Is No Compiler...
For the following, write down the expected output. If an error occurs, describe why. Assume all headers
have been included, and that we are using the standard namespace:

int d = 42;
int* dp = &d;
*dp = 43;
cout << *dp << " " << d;

43 43

double x = 42.4;
(*x) = (*x) + 1;
cout << x;

Error: x is not a pointer, can't dereference!

double x = 13.42;
double &xr = x;
xr = xr + 1;
cout << xr << " " << x;

14.42 14.42

double x = 1.1; double y = 3.2;
double &xr = x;
xr = &y;
xr += 1;

Error: Can't change what a reference points to! Ie
"xr = &y;" is an error.

cout << xr << " " << y;

int x = 1; int y = 3;
int *xr = &x;
xr = &y;
xr += 1;
cout << xr << " " << y;

002DFDC4 3
Note: When we do "xr = &y", we assign the
address of y into xr. Thus, "002DFDC4" is
displayed (or whatever the address of y happens
to be).

int x = 1; int y = 3;
int *xr = &x;
xr = &y;
(*xr) += 1;
cout << *xr << " " << y;

4 4

string s("Spoon");
string *sp = &s;
cout << sp.size();

Error: sp is a pointer, not an object! Can't use
dot­notation on pointer. Should have done:
 cout << sp­>size();
Recall: sp­>size() is equivalent to: (*sp).size()

4. Iterators
Consider the following for­loop that squares all of the even numbers within a vector:
vector<int> v = {1, 2, 3, 4, 5, 6};
for(size_t i = 0; i < v.size(); ++i) {
 if ((v[i] % 2) == 0) {
 v[i] = v[i]*v[i];
 }
}
Rewrite the above loop but using iterators (ie using begin, end, vector<int>::iterator, etc.).
// YOUR CODE HERE
[Solution]
for (vector<int> v::iterator iter = begin(v); iter!=end(v); ++iter) {
 if ((*iter)%2) == 0)
 (*iter) = (*iter)*(*iter);
}

5. Best Function Names NA
Consider the following function definitions/declarations. If there are any issues, explain why. Assume all
relevant headers are included, and we are using the standard namespace.

double foo(int a, string s) {
 return s[a + 1];
}
Error: foo should return a double,
but returns a char.

void bar(int x) {
 return x + 1;
}
Error: bar is declared as returning
void, but here it returns an int.

char baz(string s) { string garply(string str, int n) {

 return s[0];
}
Correct! s[0] is indeed a char.

 return s[n];
}
Error: s[n] is a char, but garply
should return a string!

void zzz() {
}
This is fine, no issue.

string hmm() {
 return 'a';
}
Error: 'a' is a char, but hmm()
should return a string!

double meow(int x) {
 return x;
}
This is OK ­ C++ will simply cast
the "int x" into a double.

int bark(double d) {
 return d;
}
This is OK ­ however, C++ will cast
the "double d" into an integer, ie
truncate, so you may lose
information, ie 3.14 ­> 3.

6. Swpa­ing Numbesr
Part 1​: Write a function swap1 that swaps the values of two int variables:
 int a = 42, b = 16;
 swap1(a, b);
 cout << a << " " << b; // Outputs: 16 42
// YOUR CODE HERE
[Solution]
void swap1(int &x, int &y) {
 int tmp = x;
 x = y;
 y = tmp;
}

Next, consider the following function:
void swap2(int* x, int* y) {
 int tmp = *x;
 *x = *y;
 *y = tmp;
}
Say I have two integers a and b. How do I call swap2 to swap their values?
 int a = 2, b = 1;
 // YOUR CODE HERE
 swap2(&a,&b);
 cout << a << " " << b; // Outputs: 1 2

7. Not That Kind of Chunks...
Write a function ​sort_chunks(vector<int>&v, int k)​ that sorts each consecutive group of k
elements, ie several "local" sorts, rather than a single global sort:
 vector<int> v = {4, 1, 2, 3, 0, 5, 9, 18, 1};
 // Sort each group of 3 elements
 sort_chunks(v, 3); // v is now: [1, 2, 4, 0, 3, 5, 1, 9, 18]
 vector<int> v2 = {4, 1, 2, 9, 1};
 sort_chunks(v2, 3); // v2 is now: [1, 2, 4, 1, 9]
Note: the length of v may not necessarily be a multiple of k ­ be sure to handle this case.
You should use the sort(left_iterator, right_iterator) function defined in <algorithm>:
 vector<int> v = {0, 3, 2, ­1};
 sort(begin(v), end(v)); // v is now: [­1, 0, 2, 3]

[Solution]
void sort_chunks(vector<int>&v, int k) {
 // YOUR CODE HERE
 vector<int>::iterator iter = begin(v); // Initialize iter to v start
 size_t i = 0;
 while (iter != end(v)) {
 /* Determine current chunk size */
 size_t chunk_size = k;
 if ((i + k ­ 1) >= v.size()) {
 /* Chunk would go past bounds ­ shrink this chunk */
 chunk_size = v.size() ­ i;
 }
 /* Sort current chunk */
 sort(iter, iter + chunk_size);
 /* Move iter forward to next chunk */
 iter = iter + chunk_size;
 i = i + chunk_size
 }
}
The trickiest part here is correctly handling the case when v.size() is not a multiple of k. Personally, I
have to do an example scenario on paper to figure out what the correct offsets/indexing is. What's neat
here is how flexible iterators are: we can increment them just like integers, yet they are objects ­ neat!

