PIC 10A 1C. Week 9b Exercises. TA: Eric Kim.
Note: In this class, always make constructors and member functions public, and member variables private!
Also: const-correctness, and reference parameters when appropriate.

1. Oh my glob

class Person {

public:
Person(string name, int age);
Person (string name) : myname (name), myage (1000) {}
Person (int age) : myname ("Glob"), myage (age) {}
string get name () const;
int get age() { return this->myage; }

private:

string myname;

int myage;
}i
Person::Person(string name, int age) : myname (name), myage (age) {}
string Person::get name () const {

return this->myname;

}

Consider the following code. Find the errors, and describe what went wrong:
Person finn ("Finn", 12);
const Person jake ("Jake", 30);
cout << finn.get name () << " " << jake.get name();

cout << finn.get age() << << jake.get age();
cout << jake.myage + finn.myage;
Person marcy ("Marceline");

Person glob (9000) ;

2. Even Steven meets Steven Evens

Write a class EvenGenerator that generates the even numbers starting from 2.
EvenGenerator mygen;
cout << mygen.next(); // Displays:
cout << mygen.next(); // Displays: 4
int val = mygen.next () ;
cout << mygen.next(); // Displays: 8



3. Expand your mind

Write a function expand_nums that, given a vector of positive ints, repeats each integer based on its value.
Negative numbers and zero should be unmodified:

vector<int> nums = {2, 1, 0, 3, -5};

vector<int> out = expand nums (nums); // out is: [2,2,1,0,3,3,3,-5]

4. Hip to be square

Consider the following function vecsquare:
/ * *
* Squares the integers of a vector. Modifies (mutates) the vector.
* @param vec The input vector of integers.
* @return void
* * /
void vecsquare (vector<int> wvec) {
for (size t 1 = 0; 1 < vec.size(); ++i) |

vec[i] = vec[i]*vec[i];

}
The desired usage is:

vector<int> v = {2, 3, 4};
vecsquare(v); // v is now: [4, 9, 16]
Does the function vecsquare behave correctly? If not, describe why not, and suggest a simple fix.



5. Saving Pvt. Private (starring: Maj. Major)

class A {
public:

A() = b(0) {}

void foo ()
private:

int b;
i
void A::foo () {

this->b = this->b + 10;

}
The member variable "b" is declared private, yet foo() accesses and modifies b. Does foo() compile correctly?
Explain why or why not.

6. Shadowing this

Recall that, within a class, "this" is a pointer to the current object. However, using it is sometimes optional when
accessing member variables. For instance, the following is valid code:
class Dog {

public:
Dog (string name) : myname (name) {}
void bark () const;

private:

string myname;
bi
void Dog::bark() const {
cout << this->myname << endl;
cout << myname << endl; // This works too!
}
What is a scenario where you must use the "this" parameter to refer to the object's member variable?



7. Don't fib around

Write a class FibGenerator that generates the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, etc. Recall that the
n-th term of the sequence is simply the sum of the previous two terms:

FibGenerator myfib;

for (int 1 = 0; i < 8; ++1i) {

cout << myfib.next () << " ";

}

// Outputs: 1, 1, 2, 3, 5, 8, 13, 21
Hint: You may want to keep track of the previous two terms by defining two member variables.



