
PIC 10A 1C. Week 9b Exercises. TA: Eric Kim. ​[Solutions]
Note​: In this class, always make constructors and member functions public, and member variables private!
Also: const­correctness, and reference parameters when appropriate.

1. Oh my glob
class Person {
public:
 Person(string name, int age);
 Person(string name) : myname(name), myage(1000) {}
 Person(int age) : myname("Glob"), myage(age) {}
 string get_name() const;
 int get_age() { return this­>myage; }
private:
 string myname;
 int myage;
};
Person::Person(string name, int age) : myname(name), myage(age) {}
string Person::get_name() const {
 return this­>myname;
}
Consider the following code. Find the errors, and describe what went wrong:
 Person finn("Finn", 12);
 const Person jake("Jake", 30);
 cout << finn.get_name() << " " << jake.get_name();
 cout << finn.get_age() << " " << jake.get_age();
 cout << jake.myage + finn.myage;
 Person marcy("Marceline");
 Person glob(9000);
[Solution]
cout << finn.get_age() << " " << jake.get_age(); // ERROR
"jake" is declared const, but it calls a non­const member function "get_age()", which is an error.
cout << jake.myage + finn.myage; // ERROR
myage is declared a private variable within the Person class.

2. Even Steven meets Steven Evens
Write a class EvenGenerator that generates the even numbers starting from 2.
 EvenGenerator mygen;
 cout << mygen.next(); // Displays: 2
 cout << mygen.next(); // Displays: 4
 int val = mygen.next();
 cout << mygen.next(); // Displays: 8

[Solution]
class EvenGenerator {
public:
 EvenGenerator() : v(2) {}

 int next() {
 int out = this­>v;
 this­>v += 2;
 return out;
 }
private:
 int v;
};
The member variable "v" keeps track of where we are in the sequence.

3. Expand your mind
Write a function expand_nums that, given a vector of positive ints, repeats each integer based on its value.
Negative numbers and zero should be unmodified:
 vector<int> nums = {2, 1, 0, 3, ­5};
 vector<int> out = expand_nums(nums); // out is: [2,2,1,0,3,3,3,­5]

[Solution]
vector<int> expand_nums(const vector<int>& vec) {
 vector<int> out;
 for (int x : vec) {
 if (x <= 0) {
 out.push_back(x);
 } else {
 for (unsigned i = 0; i < x; ++i) {
 out.push_back(x);
 }
 }
 }
 return out;
}

4. Hip to be square
Consider the following function vecsquare:
/**
 * Squares the integers of a vector. Modifies (mutates) the vector.
 * @param vec The input vector of integers.
 * @return void
 **/
void vecsquare(vector<int> vec) {
 for (size_t i = 0; i < vec.size(); ++i) {
 vec[i] = vec[i]*vec[i];
 }
}
The desired usage is:
 vector<int> v = {2, 3, 4};
 vecsquare(v); // v is now: [4, 9, 16]

Does the function vecsquare behave correctly? If not, describe why not, and suggest a simple fix.
[Solution]
Nope! vecsquare makes a *copy* of the input vector, and modifies only the local copy. The simplest fix is to
pass the input vector to vecsquare by reference:
void vecsquare(vector<int>& vec) { // Only change: &
 for (size_t i = 0; i < vec.size(); ++i) {
 vec[i] = vec[i]*vec[i];
 }
}

5. Saving Pvt. Private (starring: Maj. Major)
class A {
public:
 A() : b(0) {}
 void foo();
private:
 int b;
};
void A::foo() {
 this­>b = this­>b + 10;
}
The member variable "b" is declared private, yet foo() accesses and modifies b. Does foo() compile correctly?
Explain why or why not.
[Solution]
Yup, it's fine. Private variables can only be accessed within the class, ie within a constructor or member
function. Here, foo() is a member function for the A class, thus it can access b just fine.

6. Shadowing this
Recall that, within a class, "this" is a pointer to the current object. However, using it is sometimes optional when
accessing member variables. For instance, the following is valid code:
class Dog {
public:
 Dog(string name) : myname(name) {}
 void bark() const;
private:
 string myname;
};
void Dog::bark() const {
 cout << this­>myname << endl;
 cout << myname << endl; // This works too!
}
What is a scenario where you must use the "this" parameter to refer to the object's member variable?
[Solution]
If a local variable is called "myname" within a member function/constructor, then you must use "this­>myname"
to disambiguate which myname you refer to.
void Dog::bark() const {

 string myname = "bob";
 cout << myname; // Refers to local variable myname = "bob"!
 cout << this­>myname; // Refers to member variable myname.
}

7. Don't fib around
Write a class FibGenerator that generates the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, etc. Recall that the
n­th term of the sequence is simply the sum of the previous two terms:
 FibGenerator myfib;
 for (int i = 0; i < 8; ++i) {
 cout << myfib.next() << " ";
 }
 // Outputs: 1, 1, 2, 3, 5, 8, 13, 21
Hint​: You may want to keep track of the previous two terms by defining two member variables.

[Solution]
class FibGenerator {
public:
 FibGenerator() : prev1(0), prev2(0) {}
 unsigned int next();
private:
 unsigned int prev1; // stores Fib(n­1)
 unsigned int prev2; // stores Fib(n­2)
};
unsigned int FibGenerator::next() {
 if ((this­>prev1 == 0) && (this­>prev2 == 0)) {
 /* Special case: first time we call next() */
 this­>prev1 = 1; this­>prev2 = 0;
 return 1;
 }
 /* Compute Fib(n) = Fib(n­1) + Fib(n­2) */
 unsigned int fibn = this­>prev1 + this­>prev2;
 /* Update prev1, prev2 to set up for the next call to next() */
 this­>prev2 = this­>prev1;
 this­>prev1 = fibn;
 return fibn;
}

