PIC 10A 1C. Week 9b Exercises. TA: Eric Kim. [Solutions]
Note: In this class, always make constructors and member functions public, and member variables private!
Also: const-correctness, and reference parameters when appropriate.

1. Oh my glob

class Person {

public:
Person(string name, int age);
Person(string name) : myname (name), myage (1000) {}
Person (int age) : myname ("Glob"), myage (age) {}
string get name () const;
int get age() { return this->myage; }

private:

string myname;
int myage;
}i
Person::Person(string name, int age) : myname (name), myage (age) {}
string Person::get name () const {
return this->myname;
}
Consider the following code. Find the errors, and describe what went wrong:
Person finn ("Finn", 12);
const Person jake ("Jake", 30);
cout << finn.get name() << " " << jake.get name();
cout << finn.get age() << " " << jake.get age();
cout << jake.myage + finn.myage;
Person marcy ("Marceline");
Person glob (9000) ;
[Solution]
cout << finn.get_age() << " " << jake.get_age(); // ERROR
"jake" is declared const, but it calls a non-const member function "get_age()", which is an error.
cout << jake.myage + finn.myage; // ERROR
myage is declared a private variable within the Person class.

2. Even Steven meets Steven Evens

Write a class EvenGenerator that generates the even numbers starting from 2.
EvenGenerator mygen;
cout << mygen.next(); // Displays: 2
cout << mygen.next(); // Displays: 4
int val = mygen.next();
cout << mygen.next(); // Displays: 8

[Solution]
class EvenGenerator {
public:

EvenGenerator () : v(2) {}

int next () {
int out = this->v;
this->v += 2;
return out;
}
private:
int v;
bi
The member variable "v" keeps track of where we are in the sequence.

3. Expand your mind

Write a function expand_nums that, given a vector of positive ints, repeats each integer based on its value.
Negative numbers and zero should be unmodified:

vector<int> nums = {2, 1, 0, 3, -5};
vector<int> out = expand nums (nums); // out is: [2,2,1,0,3,3,3,-5]
[Solution]

vector<int> expand nums (const vector<int>& vec) {
vector<int> out;
for (int x : vec) {
if (x <= 0) {
out.push back(x);
} else {
for (unsigned i = 0; 1 < x; ++1i) {
out.push back (x);

}

return out;

4. Hip to be square

Consider the following function vecsquare:

/ * *
* Squares the integers of a vector. Modifies (mutates) the vector.
* @param vec The input vector of integers.

* @return void

**/
void vecsquare (vector<int> wvec) {
for (size t 1 = 0; 1 < vec.size(); ++i) |
vec[i] = vec[i]*vec[i];

}

The desired usage is:
vector<int> v = {2, 3, 4};
vecsquare(v); // v is now: [4, 9, 16]

Does the function vecsquare behave correctly? If not, describe why not, and suggest a simple fix.
[Solution]
Nope! vecsquare makes a *copy* of the input vector, and modifies only the local copy. The simplest fix is to
pass the input vector to vecsquare by reference:
void vecsquare (vector<int>& vec) { // Only change: &

for (size t 1 = 0; 1 < vec.size(); ++i) |

vec[i] = vec[i]*vec[i];

5. Saving Pvt. Private (starring: Maj. Major)

class A {
public:

A() @ b(0) {}

void foo () :
private:

int b;
bi
void A::foo () {

this->b = this->b + 10;

}
The member variable "b" is declared private, yet foo() accesses and modifies b. Does foo() compile correctly?
Explain why or why not.
[Solution]
Yup, it's fine. Private variables can only be accessed within the class, ie within a constructor or member
function. Here, foo() is a member function for the A class, thus it can access b just fine.

6. Shadowing this

Recall that, within a class, "this" is a pointer to the current object. However, using it is sometimes optional when
accessing member variables. For instance, the following is valid code:
class Dog {

public:
Dog(string name) : myname (name) {}
void bark () const;

private:

string myname;
}i
void Dog::bark() const {
cout << this->myname << endl;
cout << myname << endl; // This works too!
}
What is a scenario where you must use the "this" parameter to refer to the object's member variable?
[Solution]
If a local variable is called "myname" within a member function/constructor, then you must use "this->myname"
to disambiguate which myname you refer to.
void Dog::bark() const {

string myname = "bob";
cout << myname; // Refers to local variable myname = "bob"!
cout << this->myname; // Refers to member variable myname.

7. Don't fib around

Write a class FibGenerator that generates the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, etc. Recall that the
n-th term of the sequence is simply the sum of the previous two terms:

FibGenerator myfib;

for (int 1 = 0; i < 8; ++1i) {

cout << myfib.next () << " ";

}

// Outputs: 1, 1, 2, 3, 5, 8, 13, 21
Hint: You may want to keep track of the previous two terms by defining two member variables.

[Solution]

class FibGenerator {

public:
FibGenerator () : prevl(0), prev2(0) {}
unsigned int next();

private:
unsigned int prevl; // stores Fib(n-1)
unsigned int prev2; // stores Fib(n-2)

}s

unsigned int FibGenerator::next () {
if ((this->prevl == 0) && (this->prev2 == 0)) {
/* Special case: first time we call next () */
this->prevl = 1; this->prev2 = 0;

return 1;
}
/* Compute Fib (n) Fib(n-1) + Fib(n-2) */
unsigned int fibn = this->prevl + this->prev2;
/* Update prevl, prev2 to set up for the next call to next() */

this->prev2 = this->prevl;
this->prevl = fibn;

return fibn;

