PIC 10A 1C Week 4a Notes. TA: Eric Kim.

Strings

Strings are fairly special, as they are the first example of objects in this course! We'll learn more
about objects (and classes) later in the course, but at a high-level: objects have both internal
variables and functions, aka "methods".

String concatenation: +

We can join strings together using the addition operator "+". For example:

string s1 = "Cannon"; string s2 = "ball";

string s3 = sl + s2; // s3 is: "Cannonball"
We can also concatenate strings and string-literals, and strings and characters. However, you
can't concatenate two string literals:

string s4 = sl1 + "fodder"; // s4 is: "Cannonfodder"

string s5 = s1 + 's'; // s5 is: "Cannons"

cout << "hi " + "there"; // Error! Can't use + on two string literals.

cout << string("hi") + "there"; // Works! Make "hi" a string type
first.

String indexing/modifying

You can retrieve individual characters of the string via the index operator. Note that we index
starting from 0. The first character is at index 0, the second character at index 1, etc.
string s = "pony";
cout << s[2]; // prints: n
You can also change a string by assigning individual characters:
s[3] = 'g"'; // Warning: Can't do "g"! string literal vs char
cout << s; // prints: pong

string::length(), string::size()

You can ask a string for it's length/size by calling the length() and/or size() methods. Note that
these two methods return the type size t, ie "size type". The type size_t is a type specially
designed to store length information. You can think of them as "unsigned int" if you like, but it's
good practice to use size_t for size-related values.

string myname = "Corey";

size_t len = myname.length(); // or myname.size(). len is 5

cout << "length is: " << len; // cout knows how to display size_t

string::substr(size _t pos, size tlen)

Returns a new string object that starts from index "pos", and spans "len" characters. The output
string won't go past the end of the string.

Also, if you omit the 2nd argument (len), then substr() will go until the end of the string.
Examples:

string mystr = "paunch";

cout << mystr.substr(3,2); // prints: nc

cout << mystr.substr(1l); // prints: aunch

cout << mystr.substr(2,100000); // prints: unch

Indexing out of bounds

A common bug in programs is to index past the end of a string. For instance, observe the
following:

string myname = "Bob";

cout << myname[3];
Here, we indexed *outside™ of the string. The resulting value is unsafe to use, as the value may
be compiler dependent. Accessing out of bounds can even crash the program (an example of a
runtime error)! So, be careful to not index out of bounds!

Aside: On my laptop, " cout << myname[3]" displayed a space, but myname[4] crashed my
program with a runtime error.

String comparisons

You can compare strings using the operators: <, >, <=, >=, and == (equals). In C++, strings are
compared in lexicographic order in the following manner:

[EMPTY] < [SPACE] < @ <1< .. < 8<9<KAKB<K ..<Y<KZ<a<b«..<y
< z

Or written another way:

[EMPTY] < [SPACE] < [DIGITS] < [UPPERCASE LETTERS] < [lowercase letters]

You can also think of [EMPTY] as the end of the string.

Examples:
bool al = string("a") < string("b"); // al is true
bool a2 = string("9") > string("1"); // a2 is true
bool a3 = string("z") < string("a"); // a3 is true
bool a4 = string("e") == string("e"); // a4 is true

One can also compare arbitrary-length strings. For instance, if we are evaluating s1 < s2:
Compare strings s1, s2 character by character.
If a mis-match is found at index i, then output s1[i] < s2[i]
If s1 is shorter than s2, and s1 matches s2 as much as possible, then output 1
Else, output 0.

Examples:

cout << ("Dog" < "dog") << endl; // 1, because "D" is less than "d"

cout << ("Dog" < "Doga") << endl; // 1. strings match, but strl is shorter
cout << ("Dog" < "Dogaaaa") << endl; // 1. strings match, but strl is
shorter

cout << ("Doga" < "Dog") << endl; // @. strings match, but str2 is shorter

Warning: Don't confuse comparing strings and string literals. Comparing two string literals does
not do the "right" thing - never do this!
bool a4 = "a"<"b"; // Don't do this!

Aside: If you really want to know, comparing "a" < "b" results in the computer comparing the
memory addresses of the string literal "a" versus the string literal "b". So, there's almost never a
reason why one would do this.

String objects vs String Literals

Anything in double-quotes (ie "hello") is considered a string literal. String literals, unlike string
objects, do not have methods. You can't call length() on a string literal:

cout << "hello".length(); // Errors!
When we create a string object with a string literal, the string class has code that knows how to
convert a string literal into a string object:

string mynamel = "Eric";

string myname2 = string("Eric");
The two above lines are equivalent: the string() function (also known as a constructor) knows
how to, given a string literal, create a string object. We'll learn about constructors in a few
weeks.

Constant values: const

To denote a variable that should never be modified, we can add the const keyword:
double myPI = 3.1415;
myPI = 3.9; // Hm, we allowed program to change pi...
double const PI = 3.1415;
PI = 3.0; // Compiler error! Can't modify const values.

Putting it all together

1. What does the following program display? If the code errors, explain why.

string s1 = "panic";
string s2 = sl.substr(2);
string s3 = "disco";

string s4 = s3.substr(2, 1) + s3[s3.length() - 1];
string s5 = s4 + s2;
cout << s5;

