PIC 10A 1C Week 5a Notes. TA: Eric Kim

|O Manipulation

C++ offers several features to easily display text output in an organized (and even aesthetically
pleasing) manner. This functionality is part of the iomanip standard library (#include <iomanip>).

Widths (setw) and Padding (setfill)

Code: Code:
cout << "Age vs Weight" cout << "Age vs Weight" << endl;
<< endl; cout << setfill('e@');
cout << 6 << " " << 40 cout << setw(3) << 6 << " " << setw(4) << 40
<< endl; << endl;
cout << 18 << " " << 120 cout << setw(3) << 6 << " " << setw(4) << 40
<< endl; << endl;
cout << 35 << " " << 130 cout << setw(3) << 18 << " " << setw(4)
<< endl; << 120 << endl;
cout << setw(3) << 35 << " " << setw(4)
<< 130 << endl;
Output: Output:
Age vs Weight Age vs Weight
6 40 006 0040
18 120 018 0120
35 130 035 0130

Take care that you pass a character to setfill(), rather than a string literal. For instance, don't do
setfill("e"), instead do setfill('@").

Note: setw ("set width") only modifies the next output, ie short-term change. This is why | had
to repeat setw(3) and setw(4) for each output. On the other hand, setfill() modifies all future
outputs, ie long-term changes.

setprecision, fixed/scientific

We can set the number of digits to display via setprecision(), ie doing "cout << setprecision(4)"
will tell cout to only display (at most) four digits, rounding where necessary.

Code: Output:
cout << setprecision(6); 5.12934
cout << 5.12345678 << endl; 5.13

cout << setprecision(3);
cout << 5.12345678 << endl;

Note: cout defaults to setprecision(6), ie display at most six digits.

You can explicitly tell cout to display numbers in scientific notation by using the scientific
manipulator.

On the other hand, fixed is a manipulator to display numbers in decimal-point (ie fixed-point)
notation. fixed will never display an exponent field.

Code: Output:
cout << fixed << setprecision(3); 51.9
cout << 51.9 << endl; 5.190e+001

cout << scientific;
cout << 51.9 << endl;

Side Note: cout defaults to a "hybrid" mode halfway in between fixed and scientific. From the
C++ documentation:

"On the default floating-point notation, the precision field specifies the maximum number of
meaningful digits to display both before and after the decimal point, while in both the fixed and
scientific notations, the precision field specifies exactly how many digits to display after the
decimal point, even if they are trailing decimal zeros."

Code: Output:

double a = 3.1415926534; default (‘hybrid'):

double b = 2006.0; 3.1416

double ¢ = 1.0e-10; 2006

cout << setprecision(5); 1e-010

out << "default (‘hybrid"):\n"; fixed:

cout << a<<'\n'<< b <<"\n'<<c<<'\n} 3.14159

cout << "\n'; 2006.00000
0.00000

cout << "fixed:\n" << fixed:;

cout<<a<<'\n'<<b<<'\n'<<c<<'\n; scientific:

cout << "\n'; 3.14159e+000
2.00600e+003

cout << "scientific:\n" << scientific; 1.00000e-010

cout<<a<<'\n'<<b<<'\n'<<c<<'\n;

Object Oriented Programming (OOP)

An extremely popular programming paradigm, object oriented programming has become one of
the main programming paradigms since the mid 1990's. Whether you're a hobbyist or a full-time
software engineer, you'll almost certainly work with OOP during your work.

Motivation: A Student Example

Suppose we were hired to write a program for the UCLA dining hall that kept track of student
meal plan balances. To represent a single student, one could do the following:

string std@_name = "Louis Reasoner";

double std@ balance = 750.00;
To create a new student, we'd have to define a new set of variables:

string stdl_name = "Alyssa P. Hacker";

double stdl balance = 1200.00;
This is a bit cumbersome, as we need to explicitly keep track of sets of variables. A better
approach would be to represent a student as a single entity which internally keeps track of
details such as: name, student ID, and balance:

Student louis = Student("Louis Reasoner", 750.00);

Student alyssa = Student("Alyssa P. Hacker", 1200.00);

cout << louis.get name() << endl; // displays: Louis Reasoner

cout << alyssa.get_balance(); // displays: 1200.00

Class Interfaces

In OOP, a class interface is essentially an outline (or sketch) of a particular class. It typically has
either no code (or very little code), and exists simply to sketch out the class skeleton.

Typically, one will flesh out the class skeleton in a separate .cpp file. Here's a sample class
interface for the Student class:

class Student {
private:
string name;
double balance;
public:
Student(string name, double balance); // constructor
string get _name(); // method that returns the name
double get_balance(); // method that returns the balance
void deposit(double amt); // method that adds money to student's
balance
void withdraw(double amt); // method that removes money from balance

}s

Constructors

A constructor is effectively a function that creates and initializes an object. For instance, to
create a Student object, we pass in the name and balance so that the object knows its identity:

Student louis("Louis", 750.00); // create Student object name and
balance

Student louis2 = Student("Louis", 750.00); // equivalent way
When you create an object, we call the new object an instance of the class. In the above, both
louis and alyssa are instances of the Student class.

Member Variables and Functions

Classes contain both data (ex: name, balance) and behavior (ex: deposit, withdraw). In OOP
terminology, we call the data "member variables", and behavior "member functions" (or
methods).

Function Signatures

When you see a function declaration such as:
string get _name(); // method that returns the name
This means that: the function get_name takes no input arguments, and returns a string:
Student velvet("Velvet", 101.00);
string s = velvet.get_name();
cout << s; // displays: Velvet. Alt: cout << velvet.get_name();
As another example, let's look at the Student::withdraw() member function:
void withdraw(double amt); // method that removes money from balance
Here, we see that withdraw takes a single input argument amt. Also, the "void" as the return
type means that this function does not return anything:
Student morty("Morty", 9999.99);
cout << morty.get balance() << endl; // displays: 9999.99
morty.withdraw(10);
cout << morty.get balance(); // displays: 9989.99
cout << morty.withdraw(30); // CompileError: Can't cout nothing!
morty.withdraw(5) + 42; // CompileError: Can't add to nothing!
morty.withdraw(); // CompileError: Missing argument to withdraw!

Access Modifiers: public vs private

One can control what is allowed to access member variables/functions by declaring them as
public or private.

Something declared public can be accessed from outside the class. Something declared
private can only be accessed within the class definition. This will make more sense when we
start filling in class definitions with code, but here's an example:

Student eric = Student("Eric", 0.85); // just enough for coffee!
eric.deposit(1.00); // Valid: deposit is public member function

cout << eric.get_balance(); // Valid: get_balance() is public member
function

cout << eric.balance; // Invalid: balance is private member variable

