
PIC 10A 1C Week 5a Notes. TA: Eric Kim 

IO Manipulation 
C++ offers several features to easily display text output in an organized (and even aesthetically 
pleasing) manner. This functionality is part of the iomanip standard library (#include <iomanip>). 

Widths (setw) and Padding (setfill) 

Code: 
cout << "Age vs Weight" 
    << endl; 
cout << 6 << " " << 40 
    << endl; 
cout << 18 << " " << 120  
    << endl; 
cout << 35 << " " << 130  
    << endl; 

Code: 
cout << "Age vs Weight" << endl; 
cout << setfill('0'); 
cout << setw(3) << 6 << " " << setw(4) << 40 
    << endl; 
cout << setw(3) << 6 << " " << setw(4) << 40 
    << endl; 
cout << setw(3) << 18 << " " << setw(4)  
    << 120 << endl; 
cout << setw(3) << 35 << " " << setw(4) 
    << 130 << endl; 

Output: 
Age vs Weight 
6 40 
18 120 
35 130 

Output: 
Age vs Weight 
006 0040 
018 0120 
035 0130 

 
Take care that you pass a ​character​ to setfill(), rather than a string literal. For instance, don't do 
setfill("0")​, instead do ​setfill('0')​. 
 
Note​: setw ("set width") only modifies the next output, ie ​short­term​ change. This is why I had 
to repeat setw(3) and setw(4) for each output. On the other hand, setfill() modifies all future 
outputs, ie ​long­term​ changes. 

setprecision, fixed/scientific 
We can set the number of digits to display via setprecision(), ie doing "cout << setprecision(4)" 
will tell cout to only display (at most) four digits, rounding where necessary. 

Code: 
cout << setprecision(6); 
cout << 5.12345678 << endl; 
cout << setprecision(3); 
cout << 5.12345678 << endl; 

Output: 
5.12934 
5.13 

Note​: cout defaults to setprecision(6), ie display at most six digits. 



 
You can explicitly tell cout to display numbers in scientific notation by using the ​scientific 
manipulator. 
On the other hand, ​fixed​ is a manipulator to display numbers in decimal­point (ie fixed­point) 
notation. ​fixed​ will never display an exponent field. 

Code: 
cout << fixed << setprecision(3); 
cout << 51.9 << endl; 
cout << scientific; 
cout << 51.9 << endl; 

Output: 
51.9 
5.190e+001 

 
Side Note​: cout defaults to a "hybrid" mode halfway in between fixed and scientific. From the 
C++ documentation: 
"On the default floating­point notation, the ​precision field​ specifies the maximum number of 
meaningful digits to display both before and after the decimal point, while in both the fixed and 
scientific notations, the ​precision field​ specifies exactly how many digits to display ​after​ the 
decimal point, even if they are trailing decimal zeros." 

Code: 
double a = 3.1415926534; 
double b = 2006.0; 
double c = 1.0e­10; 
cout << setprecision(5); 
 
out << "default ('hybrid'):\n"; 
cout << a << '\n' << b << '\n' << c << '\n'; 
cout << '\n'; 
 
cout << "fixed:\n" << fixed; 
cout << a << '\n' << b << '\n' << c << '\n'; 
cout << '\n'; 
 
cout << "scientific:\n" << scientific; 
cout << a << '\n' << b << '\n' << c << '\n'; 

Output: 
default ('hybrid'): 
3.1416 
2006 
1e­010 
 
fixed: 
3.14159 
2006.00000 
0.00000 
 
scientific: 
3.14159e+000 
2.00600e+003 
1.00000e­010 
 

Object Oriented Programming (OOP) 
An extremely popular programming paradigm, object oriented programming has become one of 
the main programming paradigms since the mid 1990's. Whether you're a hobbyist or a full­time 
software engineer, you'll almost certainly work with OOP during your work. 
 



Motivation: A Student Example 
Suppose we were hired to write a program for the UCLA dining hall that kept track of student 
meal plan balances. To represent a single student, one could do the following: 
    string std0_name = "Louis Reasoner"; 

    double std0_balance = 750.00; 

To create a new student, we'd have to define a new set of variables: 
    string std1_name = "Alyssa P. Hacker"; 

    double std1_balance = 1200.00;  

This is a bit cumbersome, as we need to explicitly keep track of sets of variables. A better 
approach would be to represent a student as a ​single entity​ which internally keeps track of 
details such as: name, student ID, and balance: 
    Student louis = Student("Louis Reasoner", 750.00); 

    Student alyssa = Student("Alyssa P. Hacker", 1200.00); 

    cout << louis.get_name() << endl; // displays: Louis Reasoner 

    cout << alyssa.get_balance(); // displays: 1200.00 

Class Interfaces 
In OOP, a ​class interface​ is essentially an outline (or sketch) of a particular class. It typically has 
either no code (or very little code), and exists simply to sketch out the class skeleton. 
Typically, one will flesh out the class skeleton in a separate .cpp file. Here's a sample class 
interface for the Student class: 
 
class Student { 

private: 

    string name; 

    double balance; 

public: 

    Student(string name, double balance); // constructor 

    string get_name(); // method that returns the name 

    double get_balance(); // method that returns the balance 

    void deposit(double amt); // method that adds money to student's 

balance 

    void withdraw(double amt); // method that removes money from balance 

}; 

Constructors 
A constructor is effectively a function that creates and initializes an object. For instance, to 
create a ​Student​ object, we pass in the name and balance so that the object knows its identity: 
    Student louis("Louis", 750.00); // create Student object name and 

balance 



    Student louis2 = Student("Louis", 750.00); // equivalent way 

When you create an object, we call the new object an ​instance​ of the class. In the above, both 
louis​ and ​alyssa ​are ​instances​ of the ​Student​ class. 

Member Variables and Functions 
Classes contain both data (ex: name, balance) and behavior (ex: deposit, withdraw). In OOP 
terminology, we call the data ​"member variables"​, and behavior ​"member functions"​ (or 
methods). 

Function Signatures 
When you see a function declaration such as: 
    string get_name(); // method that returns the name 

This means that: the function get_name takes no input arguments, and returns a string: 
    Student velvet("Velvet", 101.00); 

    string s = velvet.get_name(); 

    cout << s; // displays: Velvet. Alt: cout << velvet.get_name(); 

As another example, let's look at the Student::withdraw() member function: 
    void withdraw(double amt); // method that removes money from balance 

Here, we see that withdraw takes a single input argument amt. Also, the "void" as the return 
type means that this function does ​not​ return anything: 
    Student morty("Morty", 9999.99); 

    cout << morty.get_balance() << endl; // displays: 9999.99 

    morty.withdraw(10); 

    cout << morty.get_balance(); // displays: 9989.99 

    cout << morty.withdraw(30); // CompileError: Can't cout nothing! 

    morty.withdraw(5) + 42; // CompileError: Can't add to nothing! 

    morty.withdraw(); // CompileError: Missing argument to withdraw! 

Access Modifiers: ​public​ vs ​private 
One can control what is allowed to access member variables/functions by declaring them as 
public​ or ​private​.  
Something declared ​public​ can be accessed from outside the class. Something declared 
private​ can only be accessed within the class definition. This will make more sense when we 
start filling in class definitions with code, but here's an example: 
Student eric = Student("Eric", 0.85); // just enough for coffee! 

eric.deposit(1.00); // Valid: deposit is public member function 

cout << eric.get_balance(); // Valid: get_balance() is public member 

function 

cout << eric.balance; // Invalid: balance is private member variable 


