PIC 10A 1C. Week 8a Notes. TA: Eric Kim

Vectors

A vector is a resizable container that stores items of the same type. To use vectors in your program,
include the <vector> library. For instance, to create a vector that stores integers:

vector<int> myints; // []

myints.push back(3); // [3]

myints.push back(5); // [3, 5]

Creating Vectors

vector<int> v; // Creates empty vector
vector<int> v (5); // Creates vector with 5 ints
// default-initialized to 0
vector<int> v (3,2); // Create vector with 3 ints, all entries are 2
vector<int> v = {1, 2}; // Creates vector with values: [1l, 2]
You can create vectors that store any type you like, including user-defined classes:
vector<string> mysong = {"This", "is", "the", "story"};
vector<double> nums = {1.2, 1.3, 42.9};
// Assume Person class exists
vector<Person> people = {Person("Troy"), Person ("Abed")};
To access elements of a vector, use the [] operator. Remember to use 0-based indexing!
vector<int> ds = {42, 9001, 1};
cout << ds[0] << endl; // Outputs: 42
cout << ds[2] << endl; // Outputs: 1
One can modify vector elements by using the [] operator as well:
ds[1l] = -9; // ds: [42, -9, 1]
cout << ds[l] << endl; // Outputs: -9

Vector Methods

size_t vector::size()
Returns the number of elements within the vector.
void vector: :push _back(val)
Adds an element to the end of the vector. Grows the vector size by 1:
vector<int> v2 = {5, 7, 11, 13}; // [5, 7, 11, 13]
v2.push back(17); // v2: [5, 7, 11, 13, 17];
void vector: :pop_back()
Removes the element at the end of the vector. Shrinks the vector size by 1. If you call pop_back()
on an empty vector, the code will crash!
vector<int> v3 = {1, 3, 5}; // [1, 3, 5]

v3.pop back(); // v3: [1, 3]
v3.pop back(); // v3: [1]
v3.pop back(); // v3: []
v3.pop back(); // Crash!



Nested Vectors

Since vectors can store any data type, you can also have vectors that store other vectors!
// Create two rows of three numbers, all initialized to 1:
// 111
// 111
vector< vector<int> > nums (2, vector<int> (3, 1))
nums[1][2] = 0;

// nums 1s now:

// 111
// 110
To understand how the assignment "nums[1][2] = 0" works, we can break it down:
vector<int> &row = nums[1l]; // row: [1, 1, 1]
row[2] = 0; // row: [1, 1, O]
// nums 1s now:
// 111
// 110

Take care that | made row a reference variable. The following does not modify nums:
// Create two rows of three numbers, all initialized to 1:
// 111
// 111
vector< vector<int> > nums (2, vector<int>(3, 1));
vector<int> row = nums[l]; // make a *copy* of nums[l], set to row
row[2] = 0; // modifies row, but not nums
// nums 1is still:
// 111
// 111

Note: A nested vector/array is also known as a 2D vector/array, or a matrix. The above nums example

is a 2x3 matrix, since it has two rows and three columns.

Warning: Be sure to include a space! "vector<vector<int>> v"is a compiler error! Instead, do:
vector < vector<int> > v;

Copy Assignment

In C++, whenever you assign a variable without the reference operator, you actually make a copy of
the right hand side. Thus, when | do "vector<int> row = nums[1];", the following happens:

(1) Make a copy of nums|[1], ie a new vector with values [1,1,1]

(2) Assign row to the new copy.
Aside: This is a simplified view of what actually happens. In C++ there is the copy constructor and the
assignment operator, both of which perform copying depending on the situation. We haven't covered
this yet (not sure if we will), so don't worry about this distinction.



Arrays

Arrays are like a primitive version of vectors. Like vectors, arrays are containers, yet there are some
major differences:

Vectors Arrays
- Are objects (v.size(), v.push_back(), etc.). - Not objects. Can't use dot notation!
- Can grow/shrink dynamically - Array size is fixed at creation (compile) time.

Array Creation

Since array sizes are fixed, you must specify the size of an area at compile time. In particular, if you
declare the size of an array in a variable, that variable must be declared const:

const size t maxCapacity = 10;

int myArrayl[maxCapacity]; // Create array of size 10

int myArray2[10]; // Create array of size 10

int size t maxCap2 = 20;

int myArray3[maxCap2]; // CompileError! maxCap2 not const.
int thisArray[] = {(1,2,3,4}; // Create array: [1, 2, 3, 4]
int a[6] = {1, 0, 2}; // initialize only first three values

One can access and modify elements of an array via the [] operator:

int al[] = {1, 2, 3};
cout << al[0] << endl; // Outputs: 1
al[2] = -42;

cout << al[2] << endl; // Outputs: -42
Finally, like vectors, you can put any data type inside of an array: ints, doubles, strings, vectors, even
other arrays!

string wds[] = {"hi", "there"}; // array of strings

int[2][3] nums; // two rows, each row having three values

nums [0] [2] = 42; // assignment works similarly to vectors

According to Professor Lindstrom, we won't go into too much detail with arrays. If you like, you can
view them as a historical predecessor to vectors.

Random Numbers

To generate pseudo-random numbers, you can use the rand() function.
int std::rand()
Outputs a pseudo-random integer between 0 and RAND_MAX (inclusive).

for (int i = 0; i < 4; ++1i ) { Output:
cout << rand() << endl; 41
} 18467
6334
26500




Rather than output truly random numbers (difficult to do on deterministic machines such as digital
computers), the rand() function instead outputs numbers from a pseudorandom number generator
(PRNG). A PRNG is designed to output values that, for all intents and purposes, appear to be
randomly generated. However, in actuality a PRNG is actually deterministic, and will always output the
same numbers for a given initial seed.

A PRNG is initialized by giving it a seed number. The PRNG uses this initial seed value as a "starting
point" for generating its pseudorandom numbers. One can consistently output the same
pseudorandom values by using the same seed:

srand (42) ; Output:
for (int i = 0; 1 < 4; ++1 ) { 175
cout << rand() << endl; 400
} 17869
srand (42) ; 30056
for (int i = 0; 1 < 4; ++1 ) { 175
cout << rand() << endl; 400
} 17869
30056

void std::srand(unsigned int seed)
Sets the seed of the pseudorandom number generator.

One popular way of seeding the PRNG is to use the current time:
srand (time (nullptr)); // seed PRNG with current time

time t std::time(time_ t* timer)

Returns the current calendar time, updating the timer argument if it's not the null pointer. In
particular, this returns the number of seconds since 00:00, Jan. 1st, 1970 UTC (ie the unix
timestamp). This is a function in the <ctime> library.

The nullptr, or "null pointer”, is a pointer that points to nothing. Here, it is used to signal to time() that
we are not passing in a time_t timer. We'll learn more about pointers soon.

Finally, RAND_MAX is a constant defined in <cstdlib>, and is the largest number that rand() can
output. We can ask C++ to output RAND_MAX for us:
cout << RAND MAX << endl; // Outputs 32767 on my laptop

Note: rand is defined in the <cstdlib> library.
Handy Tip: To output a random number between [a,b] (inclusive):

int a = 1; int b = 10;
cout << (rand() % (b-a+l)) + a << endl;



