PIC 10A 1C. Week 9a Notes. TA: Eric Kim. [Solutions]

Functions

A function (or procedure) is a construct that allows you to break up a program into logical parts. A function may
have input parameters (or arguments), and can return a value:
/ * %
* Qutputs the sum of the integers inside of a vector.
* @param v The input vector containing ints.
* @return Returns the sum of the integers within the wvector v.
* % /
int vecsum(const vector<int>& vec) {
int sum = 0;
for (size t i = 0; 1 < vec.size(); ++i)
sum += vec[i];
return sum;
}
One reason to use functions is to avoid needlessly repeating code. For instance, suppose we wanted to sum
the values of two int vectors:

/* Without functions (Bad) */ /* With functions (Good) */
vector<int> vl = {1, 2, 3}: vector<int> vl = {1, 2, 3}:
vector<int> v2 = {6, 10}; vector<int> v2 = {6, 10};
int suml = 0; int suml = vecsum(vl);
for (size t i=0; i<vl.size(); ++1i) int sum2 = vecsum(v2);

suml += v1[i];
int sum2 = 0;
for (size t i=0; i<v2.size(); ++1i)

sum?2 += v2[i];

By using the vecsum function, we are able to shorten the code and make it more understandable. Breaking up
code into logical functions is an effective way to make it more readable and less prone to bugs.

Function Scopes

Consider the above vecsum function. Within the vecsum function body, the only variables visible are:
1. Local variables, ie "sum"
2. Function parameters, ie "vec"
3. Global variables, ie "cout"

Functions are allowed to call other functions, for instance:
int square(const int x) {
return xX*x;
1
void vecsquare (vector<int>& vec) {
for (size t 1 = 0; i < vec.size(); ++i) |

vec[i] = square(vec[i]);

Recall that the compiler reads code from top-to-bottom (ie beginning to end). Take care that you declare/define
a function before you use it though. For instance:

// Compile Error: square is used // This is OK! We declare square
// before it 1is defined // first, then we use it.
void vecsquare (vector<int>& vec) { int square(int x); // Declare it first
for(size t i=0; i<vec.size();++1i) { void vecsquare (vector<int>& vec) {
vec[i] = square(vec[i]); // Error! for(size t i=0; i<vec.size(); ++1i) {
} vec[i]=square (vec[i]);
} }
int square(int x) { }
return x*x; int square(int x) { // Define square
} return x*x;
}

Reference Parameters

In C++, unless otherwise specified, a function will first make a copy of all of its arguments, and then operate
only on its copies. For instance, consider the vecsquare1 and vecsquare?2 functions:

void vecsquarel (vector<int> vec) { void vecsquare?2 (vector<int>& vec) |

for(size t i=0; i<vec.size(); ++1i) { for(size t i=0; i<vec.size(); ++1i) {
vec[li] = vec[i]*vec[i]; vec[li] = vec[i]*vec[i];
} }
} }

int main() {
vector<int> vl = {2, 4, 5}; vector<int> v2 = {6, 7};
vecsquarel (vl); // vl is still: [2, 4, 5]
vecsquare2 (v2); // v2 is now: [36, 49]

return 0;
}
vecsquare1 makes a *copy* of the input vector - thus, it does not modify the vector v1 that is passed in.
Instead, it modifies its own local copy of v1, but this copy is destroyed when the function returns.
However, since vecsquare?2 defines its input argument as a reference parameter, this means that "vec" is a
reference variable that points to the vector v2 we passed in - thus, any modifications to "vec" also modify v2.

Rule of Thumb: If you pass an object (ie vector, string) to a function, then always pass it by reference. This is
to avoid having to make a copy of the object each time you call the function. For instance, suppose you had a
vector<int> with a billion elements. This array takes up 4 GB of memory! Copying it will take a noticeable
amount of time, as well as take up a ton of memory:

/* Pass by value (copy is made) */ /* Pass by reference (no copy made) */
void foo (vector<int> v) { void bar (vector<int>& v) {
cout << vI[0]; cout << v[0];
} }
int main () {

/* Note: Don't try this on your laptop unless you have >8 GB of RAM! */
vector<int> myvec (1le9); // Creates vector with 1 billion elements
foo (myvec); // Has to copy myvec, adds several seconds of overhead,

// and also takes up an additional 4 GB of RAM!
bar (myvec); // No copy made, no overhead!
return 0;

const Parameters

If a function will not modify an input argument, it's considered good practice to declare it as const. This is for
several reasons:

1. Documentation: by seeing the "const' keyword, a programmer will immediately know that this function will
not modify the variable.

2. Compiler Aid: by telling the compiler that a variable is const, the compiler will help you out by detecting if
the function ends up modifying the const variable.
For instance, suppose | wanted to write a function vecprint() that displays all elements of a vector. This function
shouldn't modify the input vector at all - thus, | should declare the input vector argument as const:
void vecprint (const vector<int>& vec) {

cout << "[";

for (int x : vec)

cout << x;

cout << "]" << endl;
}
If | later use this function in my code, | am guaranteed that the function will never modify the input vector
because the parameter was declared const:

vector<int> myvec = {3, 1, 4, 1, 5};

vecprint (myvec) ;

// myvec is guaranteed to still be: [3,1,4,1,5]

Function Overloading

Sometimes, it makes sense to define the same function but for different input types. For instance, suppose we
wanted to define a get_size() function that worked on both strings and vectors. Here are two ways - one that
uses function overloading, and one that does not:

/* With function overloading */ /* Without overloading */

size t get size(string s) { size t get size str(string s) {
return s.size():; return s.size():;

} }

size t get size(vector<int> v) size t get size vec(vector<int> v) {
return v.size():; return v.size():;

1 1

One benefit of overloading is we don't have to define a separate function name for each type.

Be careful that you don't introduce ambiguous overloading, ie defining two functions for the same input types:
int foo(int x, int y) {
return x + y;
}
int foo(int x, int y) {

return x*x + x*y + y;

This is a compiler error, since there are two conflicting function definitions: if you call "foo (3, 4)", the

compiler doesn't know which function to call!

Note that the compiler only considers function input types for overloading. For instance, the following function

declarations are also invalid:
int g(int x);
string g(int x); // Bad!
int h(int x);

string h(char x); // Ok!

Exercises

1. To overload, or not to overload...

For the following function definitions, determine the output of the program. If an error occurs, explain. Assume

Compiler can't distinguish the g's apart

Different input types.

all headers are included, and the standard namespace is used. The first is done for you:

}

int baz(int x, int y) {

int fizzle(char x) { cout << fizzle('c') << endl;
return 4; cout << fizzle(2) << endl;
} Output:
int fizzle(int x) { g
return 8;
}
int foo(int a, string s) { cout << foo(l, 2) << endl;
if (s[0] == 'a') cout << foo (10, string("apple")) << endl;
return a + 1; OUtqu
return 0; [Solution]
5
) 11
int foo(int a, int b) {
return a + 2*b;
}
int bar (int a) { cout << bar (2) << endl;
if ((a % 2) == 0) cout << bar (3) << endl;
return a + 1; OUtqu
return 0; [Somyon]
) CompileError - bar is defined twice for same input types.
int bar (int a) {
return a + 2*b;
}
int g(int x) { cout << g(42) << endl;
return x + 1; cout << g('t') << endl;
} Output:
string g(char x) { Eéomtlon]
return string("hi") + x; hit
}
int baz(int x, double y) { cout << baz (3, 4) << endl;
return x + 2*y; cout << baz (3, 2/4) << endl;
cout << baz (3, 8.0 / 4) << endl;

Output:
[Solution]

return x*x + y; 13

2. Fixin' a Hole (in my code)
During a late-night code session -- fueled by Red Bull and pizza -- Louis Reasoner wrote a program that, while
correct, is not ideal. How would you rewrite the code so that it uses functions where appropriate? What
functions would you define, if any?
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int main () {
/* Given a bunch of names of the form "LASTNAME, FIRSTNAME",
* output the first names on each line. */
vector<string> beatles = { "McCartney, Paul", "Harrison, George",
"Lennon, John", "Starr, Ringo" };
for (string name : beatles) {
/* (1) Find the index of the comma */
size t comma ind = 0;
for (size t i = 0; 1 < name.size(); ++1i) {
") A

comma ind = i; break;

if (name[i] ==

}
/* (2) Output the first name */
cout << name.substr(comma ind + 2) << endl;

}

vector<string> dudes = { "Chopin, Frederic", "Beethoven, Ludwig",
"Liszt, Franz", "Barber, Samuel" };
for (string name : dudes) {
/* (1) Find the index of the comma */
size t comma ind = 0;

for (size t i = 0; i < name.size(); ++i) {
L) A

comma ind = i; break;

if (name[i] ==

}
/* (2) Output the first name */
cout << name.substr (comma ind + 2) << endl;
}
return 0;
}
[Solution]
There are several ways to restructure the code, but here's one straightforward way. The key idea is to identify
that there are several opportunities to logically break down the code into subfunctions.

Note that this is more of an art than a science, but it's a good skill to pick up, as well-structured code tends to
be easier to read and maintain.
There is one wart, where find_char() returns 0 if c is not present in s - but for now we'll just assume that there
always is a comma in each name.
/ * X
* Finds the index of character ¢ in the string s. Assumes that c is
* present within s.
* * /
size t find char (const string& s, const char c) {
for (size t i = 0; 1 < s.size(); ++1) {
if (s[i] == c)
return i;
}
return 0; // Not ideal, but we assume it always is found
}
/ * *
* Given a name of the form "LASTNAME, FIRSTNAME", returns the first name.
* * /
string get firstname (const string& name) {
size t comma ind = find char(name, ',');
return name.substr (comma ind+2);
1
/ * X
* Given a vector of names of the form "LASTNAME, FIRSTNAME", displays
* all of the first names.
* * /
void display firstnames (const vector<string>& names) {
for (string name : names)
cout << get firstname (name) << endl;
1
int main () {
/* Given a bunch of names of the form "LASTNAME, FIRSTNAME",
* output the first names on each line. */
vector<string> beatles = { "McCartney, Paul", "Harrison, George",
"Lennon, John", "Starr, Ringo" };
display firstnames (beatles);
vector<string> dudes = { "Chopin, Frederic", "Beethoven, Ludwig",
"Liszt, Franz", "Barber, Samuel" };
display firstnames (dudes) ;
return 0;

3. Just sorting some things out...
Write a function is_sorted that, given a vector of chars, returns true if the vector is in lexicographic order, and
false otherwise:

vector<char> vl = {'a', 'b', 'b', 'c', 'z'};

cout << is sorted(vl) << endl; // Outputs: 1

vector<char> v2 = {'c', 'a', 'z'};

cout << is sorted(v2) << endl; // Outputs: 0
[Solution]
A natural way to approach this is to compare the current char to the next char, taking care to only go up to
(vec.size()-1). Also, note that we declare the input vector to be a const reference.
bool is sorted(const vector<char>& vec) {

for (size t 1 = 0; 1 < (vec.size()-1); ++1i) {

if (vec[i] > vec[i+1l])
return false;

}

return true;

4. Flip-floppin’
Write a function vec_reverse that, given a vector of ints, reverses the order:
vector<int> myints = {8, 6, 7, 5, 3, 0, 9};
vec reverse (myints); // myints is now: [9, O, 3, 5, 7, 6, 8]
[Solution]

Here, we iteratively swap each element. | am very careful to stop at the "halfway" point, otherwise the code
would start undo-ing its previously-swapped changes! For instance, for a vector with even-length, ie [1, 3, 2, 0],
we should stop at (vec.size()/2) = 2. For a vector of odd-length, ie [4, 2, 1], we should stop at (vec.size()/2) = 1.
voild vec reverse (vector<int>& vec) {
for (size t i = 0; i < (vec.size()/2); ++1i) {
/* indswap: index to swap with */

size t indswap = vec.size() - 1 - 1;
int tmp = vec[i];
vec[i] = vec[indswap];

vec[indswap] = tmp;

