PIC 10A: Week 2a

Section 1C, Winter 2016
Prof. Michael Lindstrom (TA: Eric Kim)
v1.0

Announcements

e Quiz1 this Wednesday during lecture
e HW1 due Wednesday, 11 PM

o Submit online at ccle.ucla.edu
e Learning Objectives, Section 1

o We just finished section 1! Refer to learning objectives handout to see material that you are
expected to understand
o PDF is on course webpage, under "Learning Objectives":
m http://www.math.ucla.edu/~mikel/teaching/pic10a/

http://www.math.ucla.edu/~mikel/teaching/pic10a/
http://www.math.ucla.edu/~mikel/teaching/pic10a/

Reminders

e Lecture recordings (bruincast)

o hitp://wwwz2.0id.ucla.edu/webcasts/courses/2015-2016/2016winter/comptng10a-1

e My TA Page (where | post discussion slides/notes)
o www.eric-kim.net/teaching/pic10a_page/

e ccle.ucla.edu
o You submit your homeworks here!

http://www2.oid.ucla.edu/webcasts/courses/2015-2016/2016winter/comptng10a-1
http://www2.oid.ucla.edu/webcasts/courses/2015-2016/2016winter/comptng10a-1
http://www.eric-kim.net/teaching/pic10a_page/
http://www.eric-kim.net/teaching/pic10a_page/
http://ccle.ucla.edu
http://ccle.ucla.edu

Today

e \What is a programming language?

o High Level vs Low Level
e Compilation Process

o Preprocessor, Compiler, Assembler, Linker
e Libraries

e |[ntroto C++

What is a Programming Language”?

e (Wikipedia): "A formal constructed language designed to communicate
instructions to a machine, particularly a computer."

e Popular Languages: C/C++, Python, Java, Ruby, Javascript, Matlab, ...

o Each language has its pros and cons, but in principle, they can all accomplish
any task

Pro tip: Once you learn ~2 languages well, then you can pick up a
new language in a few weekends!
Lots of shared concepts between languages.

A (brief) history of programming languages

Old days: Writing in assembly

e Recall: different CPU's have different architectures, each with their own

assembly language
e Example: Intel chips use x86 64 assembly language, others may use MIPS

assembly.
e Back in the day, programmers wrote programs for a *particular* architecture

Example: Porting a blackjack game

e Say | programmed a blackjack game for my computer that runs architecture
X.

e My friend wants my blackjack game, but their machine uses architecture Y.

e Can'tjust copy the code and give to my friend!

e Have to rewrite the entire blackjack game in the assembly language

supported by architecture Y
o Called "porting"

Programming languages save the day...

e People designed higher-level programming languages (ie C++, Python) to
abstract away architecture-specific details

e Rather than program in an architecture-specific language (ie x86_64),
instead program in an abstract, architecture-independent language (ie C++)

Old way

Input: Assembly code

Output: Machine code (1's and 0's)

N\

Assembler

@
‘.T_!ﬂ .

Me: Writing in x86_64
assembly

—>

/

Linker

Input: Machine code
Output: Executable

—

Executable

Problem: My assembly code only works for architectures

using x86 64!

Porting to other architectures means a complete rewrite!

Old way: Porting

@
g]'_[> | Assembler |) Linker —> Executable

x86 64 assembly

.M
]r[> | Assembler |) Linker —> Executable

MIPS assembly

@
gﬂ > | Assembler | > Linker —> Executable

Some other
assembly
language...

[Each color: Different
architecture]

| have to write the same
program multiple times!

Modern way

S i
)

G

Me: Writing in C++

—

Input: Assembly code
Output: Machine code (1's and 0's)

N

Input: Machine code
Output: Executable

/

Preprocessor

Compiler | ——>| Assembler

—

Linker

B

Input: My code (ie C++)
Output: "Transformed",
expanded code. Still

C++.

N

Input: Code (ie C++)
Output: Assembly
language (ie x86_64)

—

xecut-
able

Modern way: Porting

@

Me: Writing in C++

Compiler

\

Assembler

Assembler

Assembler

—

Linker

Linker

Linker

My life is easier: only write
my program once (in C++).

New job: Someone has to write

a compiler that can support
multiple architectures.

xecut-
able

xecut-
able

ot

xecut-
able

[Each color is a
different architecture]

What is a compiler?

Input: Code in a "human-convenient" language, ie C++/Java
Output: Assembly language code
Good compilers are able to target many popular architectures

Additional Features
o Optimize code to make faster
m "Free" speed improvements! No action from programmer
o Detect syntactical errors, output meaningful error messages to programmer
m Ex: "x"is an undefined identifier.

High vs Low level programming languages

e Most programming languages can be grouped into two categories: High level

vs Low level
e To generalize: high vs low is a tradeoff between speed/efficiency of your

program and convenience for writing programs.

High Level Programming Language

e Examples: Python, Java, Matlab, Javascript

e Designed to make programming *easier*

o Pros: Easy to quickly prototype things in these languages

e Cons: Programs tend to run slower than low-level languages.

o Ex: A program written in Matlab can be ~10-100x slower than the equivalent program written
in C++.
e In practice: Many people/companies first program their product in a high-level
language.
o Then, rewrite the code causing performance bottlenecks in C/C++.

Low Level Programming Language

e Examples: C, C++. "systems" languages.

e Sacrifices programmer convenience for speed
o Forces you to manually keep track of things that higher-level languages manage for you

e Pros: Can write extremely efficient programs (if you're proficient/skilled).
e Cons: Programming is a slower, more laborious task. Many more
opportunities to make mistakes.

Where does Visual Studio fit in?

Visual Studio 2013 (or Xcode)

Input: Machine code

Input: Assembly code _
Output: Machine code (1's and 0's) Output./ExecutabIe

‘\!ﬂ . xecut-
' > | Preprocessor L >| Compiler |C—>| Assembler |C_>| Linker | able

Me: Writing in C++ / \

\
Input: My code (ie C++) Input: Code (ie C++)
Output: "Transformed", Output: Assembly
expanded code. Still language (ie x86_64)

C++.

C++: Dissecting a simple program

C++, line by line

#include <iostream>

Question: What happens when using namespace std;
| try to compile+run this // Will print "Hi!" to the screen.
program? int main() {
cout << "Hil\n";
return 0;
Answer: Simply outputs "Hi!" }

to the user, then exits
immediately.

C++, line by line: include

#include <iostream>
Include statement. e

Purpose: Unlocks additional using namespace std;
functionality for th . . . o
unctionaiity for tne program // Will print "Hi!" to the screen.
int main() {
Syntax: #include LIBRARYNAME cout << "Hil\n";
return O;

¥

What is a Library?

A library is collection of code that has functionality that will likely be useful to

other programs.
o Share/reuse code, rather than reinvent the wheel!

Example: If you want your program to have a user interface (ie windows,
buttons), then you'll need to find a graphical user interface library (GUI).
Example: If you want your program to recognize faces in a picture, you'll want
to use a face detection library, rather than write your detector from scratch.

Lots of people release libraries online that are free to use!
o Open source code: code that is free for use by anyone

C++ Standard Libraries

e Most languages (including C++) offer standard, "built-in" libraries
o Common: File reading/writing, text manipulation, core data structures

e Popular C++ standard libraries include:
o iostream, string, random

e List of standard libraries here:
o http://en.cppreference.com/w/cpp/header

http://en.cppreference.com/w/cpp/header
http://en.cppreference.com/w/cpp/header

lostream

e Purpose: "...defines the standard input/output stream objects."

e The documentation about iostream says it defines: cin, cout, cerr, clog
o http://www.cplusplus.com/referencel/iostream/

e So, including iostream tells our program that cout exists.

http://www.cplusplus.com/reference/iostream/
http://www.cplusplus.com/reference/iostream/

What if we removed the include?

45 e lud et
Question: What happens if |

try to compile this program? using namespace std;

// Will print "Hi!" to the screen.
A - int main() {
nsw?r. e program cout << "Hil\n";
doesn't compile!

Error: "cout" is an undeclared return 0;
identifier. }

Aside: cout vs cin vs cerr vs clog

e cout: "Console Out", aka "standard out"
o Writing to cout -> output text to user

e cin: "Console In", aka "standard in"
o Reading from cin -> get text/number input from user

e cerr: "Console Error", aka "standard error"
o Writing to cerr -> output warnings/error-messages

e clog: "Console Log"
o Writing to clog -> output text relating to logging/debugging/whatever-you-like

In this class: focus on e
) ote: cerr, clog are meant for programmer,
cout and cin. not for the user.

C++, line by line: namespaces

#include <iostream>
Purpos Introduces

namespace into your

program. , . ,
// Will print "H1!" to the screen.

int main() {
cout << "Hi!l\n";
return 0;

Syntax: using namespace |D;

using namespace std,;

e Tells compiler we are using the "standard namespace”
o std: "standard"

e Imports all of the functions/variables that a namespace defines

e Example: the std namespace defines cout and cin
o More generally: all C++ standard library identifiers live in the std namespace

(In this class, we won't go over namespaces too
in-depth, at least not now)

What if we remove "using namespace std;"?

#include <iostream>
Question: What

happens when | try to

compile+run this code?

// Will print "Hi!" to the screen.
int main() {

cout << "Hi!l\n";

return 0;

Answer: Program doesn't
compile!

Error message: cout is an
undeclared identifier. }

With/Without using namespace std

#include <iostream> #include <iostream>
using namespace std; // Will print "Hi!" to the screen.
// Will print "Hi!" to the screen. int main() {
int main() { std::cout << "Hi!\n";
cout << "Hi'!\n"; return 0;
return 0; }
} With Without

Verdict: "using namespace std;" simply lets us not have to type "std::" a
bunch of times.

std::cout means to access the identifier "cout" from the namespace "std".
Anything that the C++ standard library defines lives in the std namespace.

C++ line by line: Comments

#include <iostream>

Comment using namespace std;

Purpose: Provide information

or explanation useful for a ~—a// Will print "Hi!" to the screen.

programmer/reader.
int main() {
Computer ignores everything cout << "Hi!\n";
you put in a comment. return 0;

¥

C++ line by line: Comments

Question: What happens

when | try to compile+run this
program?

Answer: Compiles correctly,
and outputs "Hi".

The "meow" isn't output
because it's part of a
comment.

#include <iostream>
using namespace std;

// Will print "Hi!" to the screen.

int main() {
// cout << "meow" << endl;
cout << "Hil\n";
return 0;

¥

Multiple ways to comment

// (1) Single line comments must always start
// with two forward slashes.

/* (2) Anything in here 1is
considered to be
a comment.

*/

(1) Single-line comments
(2) Multi-line comments

C++ line by line: the main() function

#include <iostream>
using namespace std;
// Will print "Hi!" to the screen.

main
Purpose: Contains code that
actually runs when you run

the executable.))
int main() {

cout << "Hil\n";
return 0;

¥

The main() function

e The return value of the main function is known as the status code
e As convention, 0 means that the program terminated normally.

e non-zero return values (ie -1) mean that the program exited abnormally
o Examples: File wasn't found, invalid input, etc.

C++ line by line: cout

#include <iostream>

Purpose: Output text to the using namespace std;
user. // Will print "Hi!" to the screen.

int main() {

cout: Console output

npys | ",
Defined by: <iostream> cout << "Hil\n";

return 0;

¥

cout: Chaining

e Can chain "<<" together to output multiple things
e Example: cout << "I am taking " << 3 << " classes this quarter.\n";
e Qutputs: I am taking 3 classes this quarter.

cout: numbers

e cout understands numbers as well!
e Examples:

cout << "I am " << 26 <<
Outputs:
I am 26 years old.

years old.";

cout << "There are " << 42457 << red balloons.";
Outputs:

There are 99 red balloons.

"Special" characters, ie \n, \t,

e We've seen that "\n" is special: it creates a new line. Known as the new-line
escape sequence.

e Other escape sequences:
o \t Tab
o \" Double-quote
o \'" Single-quote
o \\ Back-slash

Exercises: cout

Question: What do the following output? If it errors, explain the error.

cout << "For" << "No\n";
cout << "One";

Answer:
ForNo

One

cout << "Toe\n";
cout << "\n" << "To

Answer:
Toe

To Toe

<<

Toe";

Exercises: cout

Question: What do the following output? If it errors, explain the error.

cout << ""Hello"" << "Goodbye"; cout << "Revolution " << "3+6";
Answer:
Compile error! Answer:
The word Hello is not Revolution 346

contained within double-
quotation marks, so it
doesn't make sense.

Exercises: cout

Question: Write some code that will exactly generate the following output:

I "love" waking up at 6 AM!

Answer:
cout << "I \"love\" waking up at 6 AM!";

Exercises: cout

Question: Write some code that will exactly generate the following output:

I "love" waking up at 6 AM!

Question: Is the following answer correct?
cout << "I " << " << "love" << " << " waking up at 6 AM!";

Answer: Nope! This will actually error.

cout << "I " << " << "love" << " << " waking up at 6 AM!";

e

String 1 String 2 Uhoh, what's that?

Error!

cout: endl|

e Alternative to typing "\n" a bunch of times: end|
o Stands for: "end line"

cout << "Hi there\n" << "Face here";
outputs the same thing as:

cout << "Hi there" << endl << "Face here";

Output:
Hi there
Face here

String Literal

e o create a string literal, wrap some text with double quotation marks

e Examples: "Hithere", "3+4", "bye\n" are all string literals
o We've been creating string literals all along!

String Literals

e Important: Computer will not "execute" contents of string literals. Leaves the
contents as-is.
e Example: cout << "3+4";
o Outputs: 3+4, not 7

e Exception: Escape sequences. \n, \t, \\, \", \'
o Example: cout << "hi\nthere";
o The \nis expanded out to a new-line.

Exercise

Question: Write some code that outputs the following:
I put
a newline \n there!

Answer:

cout << "I put\n" << "a newline \\n there!";
or:

cout << "I put" << endl << "a newline \\n therel";

(Unused Slides)

A (brief) history of computers

e The earliest "computers" were initially devices designed to specifically solve a
specific problem
o Example: Tide-predicting machine, 1872. Used rotating wheels and pulleys to evaluate
trigonometric sums. Analog device.

e Breakthrough: General-purpose computers. 1930's/1940's
o Devices that can be programmed to solve *any* problem
o Don't need to design+build a separate device for each problem you want to solve

e (General-purpose computers used to take up entire rooms
o Now, fit in your pocket!

Early Programming Languages

e Early general-purpose computers used punch cards to enter in programs

e Laborious procedure
o (1) Write down program on paper
o (2) Enter program line-by-line onto (many) punch cards
o (3) Feed your stack of punch cards into computer, run, and cross your fingers

Lecture Question (Fri, 1/8)

Q: Suppose your C++ installation is missing an important library file, one
that defines a symbol you use in your code. Assuming that your code is
otherwise correct, when you try to convert your code to a functional
program and run it, "who" will complain?

A) The source file
B) The editor
) The preprocessor Answer: E
) The compiler
E) The linker (or dynamic linker)
F) The executable
) The register

(
(
(C
(D
(
(
(G
(H) The loader

Using Libraries: Case Study

e Scenario: | want to write a program that, given a photo, tags all of the people
and displays it with a snazzy user interface (Ul). '
o To make things concrete, suppose I'm using Python

e Libraries | would likely need:
o A GUI library to allow my app to have an interactive Ul

m Tkinter
o A face detection library, ideally w/ a pretrained face detector
m OpenCV

o Oops, OpenCV requires me to install two more libraries: numpy and scipy
m numpy: Library to perform fast matrix/vector operations
m scipy: Library that contains a ton of useful functions for scientific computing
e Ex: optimization toolbox, statistical modeling

Library "dependencies"

