
PIC 10A: Week 3a
Section 1C, Winter 2016

Prof. Michael Lindstrom (TA: Eric Kim)
v1.0

Announcements
● HW2 due this Wednesday (11 PM)

○ UPDATE: Professor added a page 2 to the pdf that has big hints!
○ http://www.math.ucla.edu/~mikel/teaching/pic10a/work/

■ Note: Username/password can be found on CCLE

●
●

http://www.math.ucla.edu/~mikel/teaching/pic10a/work/
http://www.math.ucla.edu/~mikel/teaching/pic10a/work/

Today
● Variables
● More on Data Types

○ int, double, char, bool

● User Input
● HW2: Converting Binary/Decimal

Variables

cout << "Year:" << 2016; int year = 2016;
cout << "Year:" << year;

Output:
Year: 2016

Output:
Year: 2016

Variables allow us to keep track of values by name.

Visualizing Variables

int x = 42; int x 42

Variable Value

Visualizing Variables

int x = 42;
int y = 16;

int x 42

int y 16

Visualizing Variables

int x = 42;
int y = 16;
y = x;
cout << "y:"<< y;

int x 42

int y 42

Output:
y:42

Visualizing Variables

int x = 42;
int y = 16;
y = x;
cout << "y:"<< y;
cout << endl;
x = 3;
cout << "x:"<< x;
cout << endl;
cout << "y:"<< y;

int x

int y 42

Output:
y:42
x:3
y:42

3

Declaring Variables

int x;

int x

?Garbage?

Declares that a variable x of type
int exists.

Warning: Since x was not set to any value (initialized), x will point
to some "garbage" value. Don't use uninitialized variables!

In Visual Studio 2013, using uninitialized variables is a
compilation error.

Uninitialized Variables

int x;
cout << "x is: " << x;

This code will not compile, because we are
trying to use an uninitialized variable.

Initializing Variables

int x;

x = 42;

Declare variable x

Initialize variable x to
have value 42

int x = 42;
Declare and initialize x

Multiple Declarations

int x, y, z;
x = 3;
y = 5;
z = 7;

Declare several variables at once

double x = 3, y = 1; Declare and initialize variables

int a, b = 42, c;
a = 1;
c = 8;

Can mix and match.

Note: All multiple-declared variables are
the same type.

Order of Evaluation

int x = 2, y = 5;
x = x + y + 1;

Question: What is the final value of x?

x = x + y + 1;
=> x = 2 + 5 + 1;
=> x = 8;

When evaluating an assignment
statement:
(1) Evaluate the right-hand-side (RHS)
(2) Assign the LHS to the RHS's value

Answer: 8

Mixing Data Types (int, double)
● Rule of Thumb: When operating on both int's and double's, the resulting

value's type is upgraded to the larger/more-expressive type
○ Example: double can handle more values than int

int x = 3;
double y = 4.2;
cout << x + y;

Question: What is the output?

Answer: 7.2

Type was upgraded to double

Data Type Exercises

int x = 3;
int y = 4.2;
cout << x + y;

Output: 74.2 is truncated to 4
when assigning to an
int type

int x = 3;
double y = 4.2;
double z = x + y;
cout << z;

Output: 7.2

Type upgraded to
double

Data Type Exercises

int a = 3;
cout << a/2 << endl;
cout << a/2. << endl;

Output:

1
1.5

a/2 is dividing int by an int. Final type is an int. Truncate 1.5 to 1.
 Result: a/2 -> 1

a/2. is dividing int by a double. Final type is a double.
 Result: a/2 -> 1.5

Note: 2. is shorthand for 2.0

Casting (static_cast)
● Can explicitly tell compiler to treat a value as a certain type (ie int or double)

int x = 3;
double y = 4.2;
cout << x + y;

Type is implicitly upgraded to double

int x = 3;
double y = 4.2;
cout << static_cast<double>(x + y);

Explicitly treat value as a double

Output for Both: 7.2

static_cast

Syntax: static_cast<NEWTYPE>(<EXPR>);

Example:

int x = 1;
cout << x / 2 << endl;
cout << static_cast<double>(x) / 2 << endl;

Output:
0
0.5

Exercise: static_cast

int x = 2;
cout << static_cast<double>(x / 4) << endl;
cout << static_cast<int>(x / 4.0) << endl;
cout << x / static_cast<double>(4) << endl;

Question: What is the output?

Answer:
0
0
0.5

char
● Used to store single characters
● Use single quotes to define char's

char c1 = 'E';
char c2 = 'K';
cout << "My initials are: " << c1 << c2;

Output:
My initials are: EK

char: Single vs Double Quotes
● Careful - don't use double-quotes for char's!

char c1 = "E";
char c2 = 'K';
cout << "My initials are: " << c1 << c2;

Compiler error: complains that you can't assign a
char to something in double-quotes.

bool
● Boolean. Data type used to store either true or false.
● Example:

bool mybool1 = true;
bool mybool2 = false;
cout << "mybool1: " << mybool1 << endl;
cout << "mybool2: " << mybool2;

Output:
mybool1: 1
mybool2: 0

Note: Very common for programming
languages to treat "true" as 1, and "false" as 0.

We'll likely use bool more when we learn about
if statements, for loops, and while loops.

cin: Getting User Input
● Can ask for user input using cin: Console Input

○ Defined by <iostream> library (A C++ standard library)

● Example:

int myage;
cout << "What is your age?" << endl;
cin >> myage;
cout << "You are " << myage << " years old.";

Try it out in Visual Studio!

Chaining cin
● Like cout, one can chain together multiple cin's

int x, y;
cin >> x >> y;

User can input separate values in *two* different ways:

Option 1: Separate values by spaces
 42 9<ENTER>

Option 2: Separate values by newlines
 42<ENTER>9<ENTER>

Demo: Using cin in a program

Binary/Decimal
Decimal (Base 10) Binary (Base 2)

3 0011

2

1000

15

1001

0111

[From discussion 2b problems, question 4]

Fill in the table, converting to/from
decimal/binary as necessary.

Binary/Decimal
Decimal (Base 10) Binary (Base 2)

3 0011

2 0010

8 1000

15 1111

9 1001

7 0111

[From discussion 2b problems, question 4]

HW2: Binary/Decimal Conversion Tips
● We are only working with decimal values from 0 to 31
● Question: How many binary digits do we need to represent all integers from 0

to 31?
○ 5 binary digits
○ 0 in decimal is 00000 in binary
○ 31 in decimal is 11111 in binary

■ 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 16 + 8 + 4 + 2 + 1 = 31

● So, can write code to only deal with 5 binary digits
○ Note: Writing a program to allow arbitrary integers requires additional programming

mechanisms that we haven't learned yet (ie for-loops, if-stmts)

HW2: Binary to Decimal
● Goal: Convert binary (10100) to decimal (20)

1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0
=> 16 + 0 + 4 + 0 + 0
=> 20

How to automate this?

HW2: Binary to Decimal
● Goal: Convert binary (10100) to decimal (20)

1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0
=> 16 + 0 + 4 + 0 + 0
=> 20

Main Idea:
1. Use division by powers of 10 to "select" the left-most digit
2. Then, subtract the value of that left-most digit, and repeat.

HW2: Binary to Decimal
● Goal: Convert binary (10100) to decimal (20)

int xbin; // value in binary, ie 10100 (stored as decimal)
cin >> xbin;
int b4 = xbin / pow(10, 4);
cout << "b4 is: " << b4;

Output:
b4 is: 1

1 0 1 0 0

How to get next digit, 0?

Note: pow() is a function
defined in the <cmath> library.

HW2: Binary to Decimal
● Goal: Convert binary (10100) to decimal (20)
int xbin; // value in binary, ie 10100 (stored as decimal)
cin >> xbin;
int b4 = xbin / pow(10, 4);
cout << "b4 is: " << b4;
int xbintmp = xbin - (b4*pow(10,4));
int b3 = xbintmp / pow(10, 3);
cout << "b3 is: " << b3;

Output:
b4 is: 1
b3 is: 0

10100 - 10000
=> 0 0 1 0 0

Repeat to get b2, b1, b0.
Then, use b5, b4, b3, b2, b1
to output the decimal value!

HW2: Decimal to Binary
● Very similar idea as binary to decimal
● See page 2 of the HW2 pdf for a step-by-step hint

○ PDF was updated over the weekend

● Good luck!

