PIC 10A: Week 3b

Section 1C, Winter 2016
Prof. Michael Lindstrom (TA: Eric Kim)
v1.0



Announcements

e HW2is now due *tonight* at 11 PM

e Several HW1 scores were updated
o Can check score+comments on ccle



Today

e Operators, shorthands (i++, j+=3, etc.)
o Mod operator: %

e Numerical errors
e cin input buffering
e Discussion Problems



Operator Shorthands

int 1 = 9;

i++; ++1; i += 1;
\ l
|

All have the same effect:
Increment i by 1.

Also equivalent: 1 = i + 1;



Trivia: According to C++ spec: if

The Mod Operator: %
either are negative, then results

e AKA remainder are "implementation-defined",

e Syntax: a % b, where a,b are positive integers. which means different
compilers/machines are allowed

o Inthis course: Never let a or b be negative , )
to give whatever result they like.

e In math notation, we express this as: Scary.
o amodb
int x =1 % 3; // X is 1
X =2 % 3; // X 1is 2
X =3 % 3; // X 1s ©
X =4 % 3; // x is 1
X =5 % 3; // X 1s 2
X =6 % 3; // x is ©



Mod

Think of 5 % 3 as: the remainder of doing 5/3:

5/3 =1 + (3/3)

5/3=1

5% 3 =2
Integer division yields
the quotient. The remainder



Numerical Errors

e Overflow: When the value of an int/double exceeds the maximum value
o Example: Recall that an int has a range of about -2 billion to +2 billion.

int x = 2e9; // 2 billion
cout << "x=" << x << endl;
cout << "2*x=" << 2*x << endl;

Output:

X=2000000000
2*X=—294967296’
\

Woah, is negative?!



Numerical Errors

e Underflow is when a value is smaller than the data type's smallest value

e Precision errors
o Recall: double has roughly 15 digits of precision

double a = 2;
double b = sqgrt(a)*sqrt(a) - 2;

cout << "sgrt(2)*sqrt(2) - 2 = " << b << endl;
Output:
sgrt(2)*sqgrt(2) - 2 = 4.44089e-016
\ )
|

Woah, not exactly 0!



cin: Input buffering

int x; What cin does:

cin >> x; (1) Skip all whltes_pace (spaces, tabs, newlines) until it
reaches a non-whitespace character.
(2) Attempts to interpret the current character as the
desired type (int, double, string, etc.).

If success: chomp the character, and move onto the

next character. Stops as soon as we either find
whitespace, or an inappropriate character.

If fail: cin issues a failure, and "passes out" until you
fix it.




cin: Example

int x; Suppose the user typed:

double y;
cin >> Xx;
cin >> y;

03.14<ENTER>

What're the values of x and y?

Answer: xis 3,and yis 0.14



cin: Step by Step cin's buffer

—
32551(; Y, @14\n

cin >»> X5

cin >> y;
'."is not valid
for type int!
User typed: Outcome: Note: cin remembers
: _ its position in the
©3.14<ENTER> cin sets x to: 3 buffer for next time.




cin: Step by Step ‘ﬂs buffer

int x; ©3.14\n

-

double vy;

cin >> Xx;

cin >> y; (&=
Stop: reached a
whitespace character
(newline).

User typed: Outcome:

03.14<ENTER> cin sets y to: 0.14




cin: Handling Errors

Suppose user types:

1Nt X, y; d3<ENTER>
cin >> x;

cout << "x 1s: " << x << endl;;
cin >> y;
cout << "y 1is:

Y5 Output:
X 1s: -858993460
y is: -858993460

Uhoh! x, y not set.
Note: we are using x without initializing it with a value, hence why this
value is so strange.



cin: Handling Errors cin's buffer

int x,y; d3\n

cin >> X; {mm
cin >>y, @ cin status: FAILURE.
cin sees that 'd' is
invalid for type int.
Outcome:
User typed: cin enters a failure state, and "passes out".
cin does not set x to any value.
d3<ENTER> Any further attempts to use cin will not do anything!




cin: Handling Errors cin's buffer

—
int x; d3\n

int y;

ciln >> X, == I cin status: FAILURE.

cin >> y; /

cin is in a failure state, so
does nothing.

User typed:
d3<ENTER> Outcome:

cin does not set y to any value.



cin: How to fix failure state?

cin.clear() is a function that resets cin's state from
"Failure” to "Good".

Use it to wake up a "passed out" cin.



cin.clear(): Example

User types:
int x = 8; .A45<ENTER>
double vy;
cin >> Xx;
cin.clear();
cin >> vy;
cout << "x: " << X << endl;
cout << y: << Y, Output:

X: 8

Question: What is the output?

y: 0.45



